961 resultados para semantic annotations
Resumo:
In this paper the authors present an approach for the semantic annotation of RESTful services in the geospatial domain. Their approach automates some stages of the annotation process, by using a combination of resources and services: a cross-domain knowledge base like DBpedia, two domain ontologies like GeoNames and the WGS84 vocabulary, and suggestion and synonym services. The authors’ approach has been successfully evaluated with a set of geospatial RESTful services obtained from ProgrammableWeb.com, where geospatial services account for a third of the total amount of services available in this registry.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
The field of Semantic Web Services (SWS) has been recognized as one of the most promising areas of emergent research within the Semantic Web initiative, exhibiting an extensive commercial potential and attracting significant attention from both industry and the research community. Currently, there exist several different frameworks and languages for formally describing a Web Service: Web Ontology Language for Services (OWL-S), Web Service Modelling Ontology (WSMO) and Semantic Annotations for the Web Services Description Language (SAWSDL) are the most important approaches. To the inexperienced user, choosing the appropriate platform for a specific SWS application may prove to be challenging, given a lack of clear separation between the ideas promoted by the associated research communities. In this paper, we systematically compare OWL-S, WSMO and SAWSDL from various standpoints, namely, that of the service requester and provider as well as the broker-based view. The comparison is meant to help users to better understand the strengths and limitations of these different approaches to formalizing SWS, and to choose the most suitable solution for a given application. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
The field of Semantic Web Services (SWS) has been recognized as one of the most promising areas of emergent research within the Semantic Web (SW) initiative, exhibiting an extensive commercial potential, and attracting significant attention from both industry and the research community. Currently, there exist several different frameworks and languages for formally describing a Web Service: OWL-S (Web Ontology Language for Services), WSMO (Web Service Modeling Ontology) and SAWSDL (Semantic Annotations for the Web Services Description Language) are the most important approaches. To the inexperienced user, choosing the appropriate paradigm for a specific SWS application may prove to be challenging, given a lack of clear separation between the ideas promoted by the associated research communities. In this paper, we systematically compare OWL-S, WSMO and SAWSDL from various standpoints, namely that of the service requester and provider as well as the broker based view. The comparison is meant to help users to better understand the strengths and limitations of these different approaches to formalising SWS, and to choose the most suitable solution for a given use case. © 2013 IEEE.
Resumo:
Nowadays, a significant increase on the demand for interoperable systems for exchanging data in business collaborative environments has been noticed. Consequently, cooperation agreements between each of the involved enterprises have been brought to light. However, due to the fact that even in a same community or domain, there is a big variety of knowledge representation not semantically coincident, which embodies the existence of interoperability problems in the enterprises information systems that need to be addressed. Moreover, in relation to this, most organizations face other problems about their information systems, as: 1) domain knowledge not being easily accessible by all the stakeholders (even intra-enterprise); 2) domain knowledge not being represented in a standard format; 3) and even if it is available in a standard format, it is not supported by semantic annotations or described using a common and understandable lexicon. This dissertation proposes an approach for the establishment of an enterprise reference lexicon from business models. It addresses the automation in the information models mapping for the reference lexicon construction. It aggregates a formal and conceptual representation of the business domain, with a clear definition of the used lexicon to facilitate an overall understanding by all the involved stakeholders, including non-IT personnel.
Resumo:
En aquest treball es pretén abordar la problemàtica de confirmar o refutar si determinades fonts de notícies online mostren algun tipus de biaix que a priori un lector podria detectar per simple intuïció. Per simplificar les tasques d'anàlisi es treballa amb fonts de notícies que disposen d'APIs d'accés als seus articles i que, a més a més, proporcionen anotacions semàntiques (etiquetes) associades a cada notícia a mode de classificació d'aquestes. Per complir amb els objectius plantejats s'analitza i millora un mètode descrit en la bibliografia que permet dur a terme una anàlisi de les etiquetes per tal d'obtenir i aplicar un vocabulari comú a les diferents fonts (procediment de normalització). El programari resultant es presenta com una aplicació implementada en Java i MySQL que recol·lecta notícies anotades semànticament de diferents fonts de notícies online (els diaris The Guardian i The New York Times), les analitza i permet visualitzar els resultats en funció del vocabulari normalitzat per tal d'extreure conclusions sobre quins són els temes més tractats per cada font. Finalment, s'analitzen els resultats obtinguts, es discuteixen i s'extreuen una sèrie de conclusions sobre el mètode de normalització i classificació emprats i es proposen possibles millores per al futur de l'aplicació.
Resumo:
The goal of the present research is to define a Semantic Web framework for precedent modelling, by using knowledge extracted from text, metadata, and rules, while maintaining a strong text-to-knowledge morphism between legal text and legal concepts, in order to fill the gap between legal document and its semantics. The framework is composed of four different models that make use of standard languages from the Semantic Web stack of technologies: a document metadata structure, modelling the main parts of a judgement, and creating a bridge between a text and its semantic annotations of legal concepts; a legal core ontology, modelling abstract legal concepts and institutions contained in a rule of law; a legal domain ontology, modelling the main legal concepts in a specific domain concerned by case-law; an argumentation system, modelling the structure of argumentation. The input to the framework includes metadata associated with judicial concepts, and an ontology library representing the structure of case-law. The research relies on the previous efforts of the community in the field of legal knowledge representation and rule interchange for applications in the legal domain, in order to apply the theory to a set of real legal documents, stressing the OWL axioms definitions as much as possible in order to enable them to provide a semantically powerful representation of the legal document and a solid ground for an argumentation system using a defeasible subset of predicate logics. It appears that some new features of OWL2 unlock useful reasoning features for legal knowledge, especially if combined with defeasible rules and argumentation schemes. The main task is thus to formalize legal concepts and argumentation patterns contained in a judgement, with the following requirement: to check, validate and reuse the discourse of a judge - and the argumentation he produces - as expressed by the judicial text.
Resumo:
Natural language understanding (NLU) aims to map sentences to their semantic mean representations. Statistical approaches to NLU normally require fully-annotated training data where each sentence is paired with its word-level semantic annotations. In this paper, we propose a novel learning framework which trains the Hidden Markov Support Vector Machines (HM-SVMs) without the use of expensive fully-annotated data. In particular, our learning approach takes as input a training set of sentences labeled with abstract semantic annotations encoding underlying embedded structural relations and automatically induces derivation rules that map sentences to their semantic meaning representations. The proposed approach has been tested on the DARPA Communicator Data and achieved 93.18% in F-measure, which outperforms the previously proposed approaches of training the hidden vector state model or conditional random fields from unaligned data, with a relative error reduction rate of 43.3% and 10.6% being achieved.
Resumo:
Most of the existing work on information integration in the Semantic Web concentrates on resolving schema-level problems. Specific issues of data-level integration (instance coreferencing, conflict resolution, handling uncertainty) are usually tackled by applying the same techniques as for ontology schema matching or by reusing the solutions produced in the database domain. However, data structured according to OWL ontologies has its specific features: e.g., the classes are organized into a hierarchy, the properties are inherited, data constraints differ from those defined by database schema. This paper describes how these features are exploited in our architecture KnoFuss, designed to support data-level integration of semantic annotations.
Resumo:
Natural language understanding is to specify a computational model that maps sentences to their semantic mean representation. In this paper, we propose a novel framework to train the statistical models without using expensive fully annotated data. In particular, the input of our framework is a set of sentences labeled with abstract semantic annotations. These annotations encode the underlying embedded semantic structural relations without explicit word/semantic tag alignment. The proposed framework can automatically induce derivation rules that map sentences to their semantic meaning representations. The learning framework is applied on two statistical models, the conditional random fields (CRFs) and the hidden Markov support vector machines (HM-SVMs). Our experimental results on the DARPA communicator data show that both CRFs and HM-SVMs outperform the baseline approach, previously proposed hidden vector state (HVS) model which is also trained on abstract semantic annotations. In addition, the proposed framework shows superior performance than two other baseline approaches, a hybrid framework combining HVS and HM-SVMs and discriminative training of HVS, with a relative error reduction rate of about 25% and 15% being achieved in F-measure.
Resumo:
Instituto Politécnico de Lisboa (IPL) e Instituto Superior de Engenharia de Lisboa (ISEL)apoio concedido pela bolsa SPRH/PROTEC/67580/2010, que apoiou parcialmente este trabalho
Resumo:
This talk will present an overview of the ongoing ERCIM project SMARTDOCS (SeMAntically-cReaTed DOCuments) which aims at automatically generating webpages from RDF data. It will particularly focus on the current issues and the investigated solutions in the different modules of the project, which are related to document planning, natural language generation and multimedia perspectives. The second part of the talk will be dedicated to the KODA annotation system, which is a knowledge-base-agnostic annotator designed to provide the RDF annotations required in the document generation process.
Resumo:
Actualmente, la Web provee un inmenso conjunto de servicios (WS-*, RESTful, OGC WFS), los cuales están normalmente expuestos a través de diferentes estándares que permiten localizar e invocar a estos servicios. Estos servicios están, generalmente, descritos utilizando información textual, sin una descripción formal, es decir, la descripción de los servicios es únicamente sintáctica. Para facilitar el uso y entendimiento de estos servicios, es necesario anotarlos de manera formal a través de la descripción de los metadatos. El objetivo de esta tesis es proponer un enfoque para la anotación semántica de servicios Web en el dominio geoespacial. Este enfoque permite automatizar algunas de las etapas del proceso de anotación, mediante el uso combinado de recursos ontológicos y servicios externos. Este proceso ha sido evaluado satisfactoriamente con un conjunto de servicios en el dominio geoespacial. La contribución principal de este trabajo es la automatización parcial del proceso de anotación semántica de los servicios RESTful y WFS, lo cual mejora el estado del arte en esta área. Una lista detallada de las contribuciones son: • Un modelo para representar servicios Web desde el punto de vista sintáctico y semántico, teniendo en cuenta el esquema y las instancias. • Un método para anotar servicios Web utilizando ontologías y recursos externos. • Un sistema que implementa el proceso de anotación propuesto. • Un banco de pruebas para la anotación semántica de servicios RESTful y OGC WFS. Abstract The Web contains an immense collection of Web services (WS-*, RESTful, OGC WFS), normally exposed through standards that tell us how to locate and invocate them. These services are usually described using mostly textual information and without proper formal descriptions, that is, existing service descriptions mostly stay on a syntactic level. If we want to make such services potentially easier to understand and use, we may want to annotate them formally, by means of descriptive metadata. The objective of this thesis is to propose an approach for the semantic annotation of services in the geospatial domain. Our approach automates some stages of the annotation process, by using a combination of thirdparty resources and services. It has been successfully evaluated with a set of geospatial services. The main contribution of this work is the partial automation of the process of RESTful and WFS semantic annotation services, what improves the current state of the art in this area. The more detailed list of contributions are: • A model for representing Web services. • A method for annotating Web services using ontological and external resources. • A system that implements the proposed annotation process. • A gold standard for the semantic annotation of RESTful and OGC WFS services, and algorithms for evaluating the annotations.
Resumo:
We propose a hybrid generative/discriminative framework for semantic parsing which combines the hidden vector state (HVS) model and the hidden Markov support vector machines (HM-SVMs). The HVS model is an extension of the basic discrete Markov model in which context is encoded as a stack-oriented state vector. The HM-SVMs combine the advantages of the hidden Markov models and the support vector machines. By employing a modified K-means clustering method, a small set of most representative sentences can be automatically selected from an un-annotated corpus. These sentences together with their abstract annotations are used to train an HVS model which could be subsequently applied on the whole corpus to generate semantic parsing results. The most confident semantic parsing results are selected to generate a fully-annotated corpus which is used to train the HM-SVMs. The proposed framework has been tested on the DARPA Communicator Data. Experimental results show that an improvement over the baseline HVS parser has been observed using the hybrid framework. When compared with the HM-SVMs trained from the fully-annotated corpus, the hybrid framework gave a comparable performance with only a small set of lightly annotated sentences. © 2008. Licensed under the Creative Commons.