992 resultados para self-assembled monolayers (SAMs)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ordered nano-structured surfaces, like self-assembled monolayers (SAMs) are of a great scientific interest, due to the low cost, simplicity, and versatility of this method. SAMs found numerous of applications in molecular electronics, biochemistry and optical devices. Phthalocyanine (Pc) complexes are of particular interest for the SAM preparation. These molecules exhibit fascinating physical properties and are chemically and thermally stable. Moreover their complex structure is advantageous for the fabrication of switchable surfaces. In this work the adsorption process of Pcs derivatives, namely, subphthalocyanines (SubPcB) and terbium (2TbPc) sandwich complexes on gold has been investigated. The influence of the molecular concentration, chain length of peripheral groups, and temperature on the film formation process has been examined using a number of techniques. The SAMs formation process has been followed in situ and in real time by means of second harmonic generation (SHG) and surface plasmon resonance (SPR) spectroscopy. To investigate the quality of the SAMs prepared at different temperatures atomic force microscopy (AFM) and X-Ray photoelectron spectroscopy (XPS)measurements were performed. Valuable information about SubPcB and 2TbPc adsorbtion process has been obtained in the frame of this work. The kinetic data, obtained with SHG and SPR, shows the best conformance with the first order Langmuir kinetic model. Comparing SHG and SPR results, it has been found, that the film formation occurs faster than the formation of chemical bonds. Such, the maximum amount of molecules on the surface is reached after 6 min for SubPcB and 30 min for 2TbPc. However, at this time the amount of formed chemicals bonds is only 10% and 40% for SubPcB and 2TbPc, respectively. The most intriguing result, among others, was obtained at T = 2 °C, where the formation of the less dense SAMs have been detected with SHG.However, analyzing XPS and AFM data, it has been revealed, that there is the same amount of molecules on the surface at both temperature T = 2 °C, and T = 21 °C, but the amount of formed chemicals bond is different. At T = 2 °C molecules form aggregates, therefore many of available anchor groups stay unattached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic printed electronics is attracting an ever-growing interest in the last decades because of its impressive breakthroughs concerning the chemical design of π-conjugated materials and their processing. This has an impact on novel applications, such as flexible-large-area displays, low- cost printable circuits, plastic solar cells and lab-on-a-chip devices. The organic field-effect transistor (OFET) relies on a thin film of organic semiconductor that bridges source and drain electrodes. Since its first discovery in the 80s, intensive research activities were deployed in order to control the chemico-physical properties of these electronic devices and consequently their charge. Self-assembled monolayers (SAMs) are a versatile tool for tuning the properties of metallic, semi-conducting, and insulating surfaces. Within this context, OFETs represent reliable instruments for measuring the electrical properties of the SAMs in a Metal/SAM/OS junction. Our experimental approach, named Charge Injection Organic-Gauge (CIOG), uses OTFT in a charge-injection controlled regime. The CIOG sensitivity has been extensively demonstrated on different homologous self-assembling molecules that differ in either chain length or in anchor/terminal group. One of the latest applications of organic electronics is the so-called “bio-electronics” that makes use of electronic devices to encompass interests of the medical science, such as biosensors, biotransducers etc… As a result, thee second part of this thesis deals with the realization of an electronic transducer based on an Organic Field-Effect Transistor operating in aqueous media. Here, the conventional bottom gate/bottom contact configuration is replaced by top gate architecture with the electrolyte that ensures electrical contact between the top gold electrode and the semiconductor layer. This configuration is named Electrolyte-Gated Field-Effect Transistor (EGOFET). The functionalization of the top electrode is the sensing core of the device allowing the detection of dopamine as well as of protein biomarkers with ultra-low sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An immunosensor interface based on mixed hydrophobic self-assembled monolayers (SAMs) of methyl and carboxylic acid terminated thiols with covalently attached human Immunoglobulin G (hIgG), is investigated. The densely packed and organised SAMs were characterised by contact angle measurements and cyclic voltammetry. The effect of the non-ionic surfactant, Tween 20, in preventing nonspecific adsorption is addressed by ellipsometry during physical and covalent hIgG immobilization on pure and mixed SAMs, respectively. It is clearly demonstrated that nonspecific adsorption due to hydrophobic interactions of hIgG on methyl ended groups is totally inhibited, whereas electrostatic/hydrogen bonding interactions with the exposed carboxylic groups prevail in the presence of surfactant. Results of ellipsometry and Atomic Force Microscopy, reveal that the surface concentration of covalently immobilized hIgG is determined by the ratio of COOH/CH3-terminated thiols in SAM forming solution. Moreover, the ellipsometric data demonstrates that the ratio of bound anti-hIgG/hIgG depends on the density of hIgG on the surface and that the highest ratio is close to three. We also report the selectivity and high sensitivity achieved by chronoamperometry in the detection of adsorbed hIgG and the reaction with its antibody.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reversible fabrication of positive and negative nanopatterns on 1-hexadecanethiol (HDT) self-assembled monolayers (SAMs) on Au(111) was realized by bias-assisted atomic force microscopy (AFM) nanolithography using an ethanol-ink tip. The formation of positive and negative nanopatterns via the bias-assisted nanolithography depends solely on the polarity of the applied bias, and their writing speeds can reach 800,um/s and go beyond 1000 mu m/s, respectively. The composition of the positive nanopatterns is gold oxide and the nanometer-scale gold oxide can be reduced by ethanol to gold, as proved by X-ray photoelectron spectroscopy (XPS) analysis, forming the negative nanopatterns which can be refilled with HDT to recover the SAMs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A universal metal-molecule-metal sandwich architecture by the self-assembly of Ag nanoparticles (NPs) and Au NPs of various shapes interconnected with 4-aminothiophenol (4-ATP) molecules was presented. These Ag NPs/4-ATP/Au NPs sandwich structures were characterized by surface enhanced Raman scattering (SERS) using an off-surface plasmon resonance condition. Enhancement factors (EF) on the order of 10(8) for 9b(b(2)) vibration mode were observed for the 4-ATP self-assembled monolayers (SAMs) in such sandwich structures. The factors are 2 orders of magnitude larger than that on the monolayer of Au NPs of various shapes under similar condition. More importantly, remarkable increase in the intensity of b(2) vibrational modes, which is characteristic of the charge transfer (CT) behavior between metal NPs and 4-ATP molecules, was observed in these sandwich structures under 1064 nm excitation. The obtained EF on these sandwich structure for 9b(b(2)) is larger than that for 7a vibration mode by a factor of similar to 10(2), demonstrating the importance of the contribution of the CT mechanism and the CT behavior of metal contacts, which play a significant role in metal-molecule-metal nanosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supramolecular self-assembled monolayers (SAMs) of C-60 by thiolated beta-cyclodextrin (CD) on gold surfaces were constructed for the first time using C-60 monoanion. The results indicate that monoanionic C-60 plays a crucial role in the formation of the C-60-containing self-assembled monolayers. The generation of C-60 monoanion and the formation process of C-60 SAMs were monitored in-situ by UV-visible and near-IR spectroscopy. The resulting C-60 SAMs were fully characterized by spectroscopic ellipsometry (SE), cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. After the immobilization of C-60 by the SAMs of thiolated beta-CD, the film thickness increased by approximately 1 nm from 0.8 to 1.8 nm as determined by SE, demonstrating the formation of the supramolecular self-assembled monolayers of thiolated beta-CD/C-60. The new C-60 SAMs exhibited one quasi-reversible redox couple at half wave potential of -0.57 V vs SCE in aqueous solution containing 0.1 M KCl. The surface coverage of C-60 on the gold surfaces was estimated to be 1.1 x 10(-10) mol cm(-2). The XPS showed the assembly of C-60 over the thiolated beta-CD SAMs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel electroactive silsesquioxane precursor, N-(4-aminophenyl)-M-(4'-(3-triethoxysilyl-propyl-ureido) phenyl-1,4-quinonenediimine) (ATQD), was successfully synthesized from the emeraldine form of amino-capped aniline trimers via a one-step coupling reaction and subsequent purification by column chromatography. The physicochemical properties of ATQD were characterized using mass spectrometry as well as by nuclear magnetic resonance and UV-vis spectroscopy. Analysis by cyclic voltammetry confirmed that the intrinsic electroactivity of ATQD was maintained upon protonic acid doping, exhibiting two distinct reversible oxidative states, similar to polyaniline. The aromatic amine terminals of self-assembled monolayers (SAMs) of ATQD on glass substrates were covalently modified with an adhesive oligopeptide, cyclic Arg-Gly-Asp (RGD) (ATQD-RGD). The mean height of the monolayer coating on the surfaces was similar to 3 nm, as measured by atomic force microscopy. The biocompatibility of the novel electroactive substrates was evaluated using PC12 pheochromocytoma cells, an established cell line of neural origin. The bioactive, derivatized electroactive scaffold material, ATQD-RGD, supported PC12 cell adhesion and proliferation, similar to control tissue-culture-treated polystyrene surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immobilization of surface-derivatized gold nanoparticles onto methyl-terminated self-assembled monolayers (SAMs) on gold surface was achieved by the cooperation of hydrophobic and electrophoretic forces. Electrochemical and scanning probe microscopy techniques were utilized to explore the influence of the SAM's structure and properties of the nanoparticle/SAM/gold system. SAMs prepared from 1-decanethiol (DT) and 2-mercapto-3-n-octylthiophene (MOT) were used as hydrophobic substrates. The DT SAM is a closely packed and organized monolayer, which can effectively block the underlying gold and inhibit a variety of solution species including organic and inorganic molecules from penetrating, whereas the MOT monolayer is poorly packed or disorganized (because of a large difference in dimension between the thiophene head and the alkylchain tail) and permeable to many organic probes in aqueous solution but not to inorganic probes. Thus, the MOT monolayer provides a more energetically favorable hydrophobic surface for the penetration and adsorption of organic species than the DT monolayer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled monolayers (SAMs) of 4,4'-thiobisbenzenethiol (TBBT) can be formed on Au surface spontaneously. The structural characteristics and adsorption behavior of TBBT SAMs on Au have been investigated by surface enhanced Raman scattering (SERS), electrochemical cyclic voltammetry (CV), ac impedance spectroscopy (EIS), and atomic force microscopy (AFM). It is demonstrated that TBBT adsorbed on Au by losing a H atom, forming one Au-S bond, and the other mercapto group is free at the surface of the monolayer owing to the presence of the nu(S-H) at 2513 cm(-1) and the delta(C-S-H) at 910 cm(-1) in SERS. The enhancement of the vibration of C-S (1064 cm(-1)), the aromatic C-H vibration (3044 cm(-1)), and the absence of the vibration of S-S illustrate TBBT adsorbed on Au forming a monolayer with one benzene ring tilted with respect to the Au surface. The interpretation of the observed frequencies is aided by ab initio molecular orbital (MO) calculations at the HF/6-31G* level of theory. Electrochemical CV and EIS indicate TBBT monolayers can passivate the Au effectively for its low ratio of pinhole defects (theta = 99.6%). AFM studies give details about the surface morphology. The applications of TBBT SAMs have been extensively investigated by exposure of Cu2+ ion to TBBT SAMs on Au and covalent adsorption of metal nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sandwich structure consisting of Ag nanoparticles (NPs), p-aminothiophenol (p-ATP) self-assembled monolayers (SAMs), and Ag NPs was fabricated on glass and characterized by surface enhanced Raman scattering (SERS). The SERS spectrum of a p-ATP SAM in such sandwich structure shows that the electromagnetic enhancement is greater than that on Ag NPs assembled on glass. The obtained enhancement factors (EF) on solely one sandwich structure were as large as 6.0 +/- 0.62x10(4) and 1.2 +/- 0.62x10(7) for the 7a and 3b(b(2)) vibration modes, respectively. The large enhancement effect of p-ATP SAMs is likely a result of plasmon coupling between the two layers of Ag NP (localized surface plasmon) resonance, creating a large localized electromagnetic field at their interface, where p-ATP resides. Moreover, the fact that large EF values (similar to 1.9 +/- 0.7x10(4) and 9.4 +/- 0.7x10(6) for the 7a- and b(2)-type vibration modes, respectively) were also obtained on a single sandwich structure of Au NPs/p-ATP SAMs/Ag NPs in the visible demonstrates that the electromagnetic coupling does not exist only between Ag NPs but also between Au and Ag NPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthetic and functional versatility of dendrimers and their well-defined shapes make them attractive molecules for surface modification. We synthesized six structurally very similar surface-bound dendrons and used them as building blocks for the preparation of self-assembled monolayers (SAMs) on a gold surface. We studied the effects of the surface-bound dendron's main structure, peripheral substituents, and the coadsorption process on its self-assembling behavior. Using scanning tunneling microscopy (STM), we observed nanostripes for SAMs of the surface-bound dendron consisting of symmetrical benzene rings. When we changed the symmetrical dendron's structure slightly, by increasing or decreasing the numbers of benzene rings at one wedge, we found no ordered structures were formed by the asymmetrical dendrons. We also introduced two kinds of substituents, heptane chains and oligo(ethylene oxide) chains, to the symmetrical dendron's periphery. Heptane chains appear to enhance the interaction between symmetrical backbones, leading to the formation of stripes, while oligo(ethylene oxide) chains appear to weaken the interaction between symmetrical backbones, resulting in a homogeneous structure. Dendrons with both heptane and oligo(ethylene oxide) chains exhibit nanophase separation in a confined state, leading to the formation of a honeycomb structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the surface acid-base property of carboxylic acid-terminated self-assembled monolayers (SAMs). A carboxylic acid-terminated thiol, such as thioctic acid (1,2-dithiolane-3-pentanoic add), was self-assembled on gold electrodes. Electron transfer between the bulk solution and the SAM modified electrode was studied at different pH using Fe(CN)(6)(3-) as a probe. The surface pK(a) of thioctic acid was determined by cyclic voltammetry and electrochemical impedance spectroscopy to be 5.6 +/- 0.1 and 5.8 +/- 0.1, respectively. The method is compared with other methods of monolayer pK(a) measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different sizes of Frechet-type dendrons with a thiol group at the focal point were synthesized, well characterized, and used as building blocks for the preparation of self-assembled monolayers (SAMs) on metal surfaces. From the studies of the kinetic process of dendron thiol self-assembling on gold, it is shown that the dendron thiol assembling proceeds with different adsorption rates depending on the assembly time. In contrast to normal alkanethiols forming highly molecular structures on metal surfaces, the SAMs of polyether dendron form patterned surfaces with nanometer-sized features and in long-range order. It is found that the patterned stripes are closely related to the size of the dendron, and the patterned stripes can be improved by thermal annealing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled monolayers(SAMs) of trichlorogermanyl propanoic acid derivatives on hydroxylated silicon substrates are prepared for the first time. Contact angle measurement, ellipsometry and X-ray photoelectron spectrometry(XPS) are used to characterize these SAMs, It is demonstrated that a quasi-2D network is formed on the surface of the substrate after molecules adsorbed on it. The molecular chains have certain tilt angles to the substrate surface, The wettabilities of the SAMs are various,because the molecules adsorbed and liquids used in the experiments are different. It can be concluded that trichlorogermanes have similar self-assembly behavior as trichlorosilanes, Four SAMs are studied together: they are acid, ethyl, butyl and hexyl surfaces whose results are of good consistency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the binding characteristics of double-stranded DNA to self-assembled monolayers (SAMs) containing viologen groups formed on the surface of gold electrodes via Au-S bonds. The positive charged and hydrophobic surfaces of the viologen SAMs modified gold electrodes are suitable to bind strongly dth DNA, whose interactions to solution DNA and adsorbed DNA both lead to positive shifts (22.5 mV and 65 mV, respectively) in the first redox potential ci viologen centers, indicating that the main interaction is from a hydrophobic interaction. Meanwhile, the binding of DNA strongly affects the kinetics of electron transfer of the viologen group so that the separation of anodic and cathodic peak potentials becomes larger and the heterogeneous electron transfer constant becomes smaller.