997 resultados para self-alignment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-alignment of soldered electronic components such as flip-chips (FC), ball grid arrays (BGA) and optoelectronic devices during solder reflow is important as it ensures good alignment between components and substrates. Two uncoupled analytical models are presented which provide estimates of the dynamic time scales of both the chip and the solder in the self-alignment process. These predicted time scales can be used to decide whether a coupled dynamic analysis is required for the analysis of the chip motion. In this paper, we will show that for flip-chips, the alignment dynamics can be described accurately only when the chip motion is coupled with the solder motion because the two have similar time-scale values. To study this coupled phenomenon, a dynamic modeling method has been developed. The modeling results show that the uncoupled and coupled calculations result in significantly different predictions. The calculations based on the coupled model predict much faster rates of alignment than those predicted using the uncoupled approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concepts of lateral ordering of epitaxial semiconductor quantum dots (QDs) are for the first time transferred to hybrid nanostructures for active plasmonics. We review our recent research on the self-alignment of epitaxial nanocrystals of In and Ag on ordered one-dimensional In(Ga)As QD arrays and isolated QDs by molecular beam epitaxy. By changing the growth conditions the size and density of the metal nanocrystals are easily controlled and the surface plasmon resonance wavelength is tuned over a wide range in order to match the emission wavelength of the QDs. Photoluminescence measurements reveal large enhancement of the emitted light intensity due to plasmon enhanced emission and absorption down to the single QD level.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We demonstrate the production of integrated-gate nanocathodes which have a single carbon nanotube or silicon nanowire/whisker per gate aperture. The fabrication is based on a technologically scalable, self-alignment process in which a single lithographic step is used to define the gate, insulator, and emitter. The nanotube-based gated nanocathode array has a low turn-on voltage of 25 V and a peak current of 5 μA at 46 V, with a gate current of 10 nA (i.e., 99% transparency). These low operating voltage cathodes are potentially useful as electron sources for field emission displays or miniaturizing electron-based instrumentation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new type of self-aligned spotsize converter (SSC) integrated 1.55 mum DFB lasers had been proposed in this article. The upper optical confinement layer and the butt-coupled tapered thickness waveguide were regrown simultaneously, which not only offered the separate optimization of the active region and the integrated SSC, but also reduced the difficulty of the butt-joint selective regrowth. The vertical and horizontal far field angles were 9degrees and 12degrees respectively, the 1- dB misalignment tolerance were both 3.6 and 3.4 mum. The directed coupling efficiency to tapered single mode fiber was 48%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The growth pressure and mask width dependent thickness enhancement factors of selective-area MOCVD. grow th were investigated in this article. A, high enhancement of 5.8 was obtained at 130 mbar with the mask width of 70 mum. Mismatched InGaAsP (-0.5%) at the maskless region which could ensure the material at butt-joint region to be matched to InP was successively grown by controlling the composition and mismatch modulation in the selective-area growth. The upper optical confinement layer and the butt-coupled tapered thickness waveguide were regrown simultaneously in separated confined heterostructure 1.55 gm distributed feedback laser, which not only offered the separated optimization of the active region and the integrated spotsize converter, but also reduced the difficulty of the butt-joint selective regrowth. A narrow beam of 9degrees and 12degrees in the vertical and horizontal directions, a low threshold current of 6.5 mA was fabricated by using this technique. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The 6-period stacked layers of self-assembled InAs quasi-quantum wires(qQWRs) and quantum dots(QDs) embedded into InAlAs on InP(001) substrates have been prepared by solid molecular beam epitaxy. The structures are characterized by atomic force microscopy(AFM) and transmission electron microscopy(TEM). From AFM we have observed for the first time that InAs qQWRs and QDs coexist, and we explained this phenomenon from the view of the energy related to the islands. Cross-sectional TEM shows that InAs qQWRs are vertically aligned every other layer along the growth direction [001], which disagrees with conventional vertical self-alignment of InAs QDs on GaAs substrate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have demonstrated a self-aligned process to fabricate organized iron nanowires on a planarized surface with wire dimensions down to 50 nm. Polishing was used to expose an alternating silicon silicon dioxide edge and a dual selective metal deposition process produced the nanowires. The initial selective deposition produced a tungsten layer on the exposed polysilicon regions. The discovery that selective chemical vapor deposition of iron from Fe(CO)(5) precursor on dielectric surfaces over tungsten surfaces is the key factor that enables the self-alignment of the iron nanowires. Dimensions of the wires are determined by the thickness of the thermal oxide. (c) 2007 The Electrochemical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis describes the design and development of an eye alignment/tracking system which allows self alignment of the eye’s optical axis with a measurement axis. Eye alignment is an area of research largely over-looked, yet it is a fundamental requirement in the acquisition of clinical data from the eye. New trends in the ophthalmic market, desiring portable hand-held apparatus, and the application of ophthalmic measurements in areas other than vision care have brought eye alignment under new scrutiny. Ophthalmic measurements taken in hand-held devices with out an clinician present requires alignment in an entirely new set of circumstances, requiring a novel solution. In order to solve this problem, the research has drawn upon eye tracking technology to monitor the eye, and a principle of self alignment to perform alignment correction. A handheld device naturally lends itself to the patient performing alignment, thus a technique has been designed to communicate raw eye tracking data to the user in a manner which allows the user to make the necessary corrections. The proposed technique is a novel methodology in which misalignment to the eye’s optical axis can be quantified, corrected and evaluated. The technique uses Purkinje Image tracking to monitor the eye’s movement as well as the orientation of the optical axis. The use of two sets of Purkinje Images allows quantification of the eye’s physical parameters needed for accurate Purkinje Image tracking, negating the need for prior anatomical data. An instrument employing the methodology was subsequently prototyped and validated, allowing a sample group to achieve self alignment of their optical axis with an imaging axis within 16.5-40.8 s, and with a rotational precision of 0.03-0.043°(95% confidence intervals). By encompassing all these factors the technique facilitates self alignment from an unaligned position on the visual axis to an aligned position on the optical axis. The consequence of this is that ophthalmic measurements, specifically pachymetric measurements, can be made in the absence of an optician, allowing the use of ophthalmic instrumentation and measurements in health professions other than vision care.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dense arrays of high aspect ratio Si micro-pyramids have been formed by cumulative high intensity laser irradiation of doped Si wafers in an SF6 environment. A comparative study using nanosecond (XeCl, 308 nm) and femtosecond (Ti: Sapphire, 800 nm and KrF, 248 nm) laser pulses has been performed in this work. The influence of pulse duration and ambient gas pressure (SF6) is also presented. Scanning electron microscopy has shown that upon laser irradiation conical features appear on the Si surface in a rather homogenous distribution and with a spontaneous self alignment into arrays. Their lowest tip diameter is 800 nm; while their height reaches up to 90 mum. Secondary tip decoration appears on the surface of the formed spikes. Areas of 2 X 2 mm(2) covered with Si cones have been tested as cold cathode field emitters. After several conditioning cycles, the field emission threshold for the studied Si tips is as low as 2 V/mum, with an emission current of 10(-3) A/cm(2) at 4 V/mum. Even though these structures have smaller aspect ratios than good quality carbon nanotubes, their field emission properties are similar. The simple and direct formation of field emission Si arrays over small pre-selected areas by laser irradiation could lead to a novel approach for the development of electron sources. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Tandem PiN Schottky (TPS) rectifier features lowly-doped p-layers in both active and termination regions, and is applied in 600-V rating for the first time. In the active region, the Schottky contact is in series connection with a transparent p-layer, leading to a superior forward performance than the conventional diodes. In addition, due to the benefit of moderate hole injection from the p-layer, the TPS offers a better trade-off between the on-state voltage and the switching speed. The active p-layer also helps to stabilise the Schottky contact, and hence the electrical data distributions are more concentrated. Regarding the floating p-layer in the termination region, its purpose is to reduce the peak electric fields, and the TPS demonstrates a high breakdown voltage with a compact termination width, less than 70% of the state-of-the-art devices on the market. Experimental results have shown that the 600-V TPS rectifier has an ultra-low on-state voltage of 0.98 V at 250 A/cm 2, a fast turn-off time of 75 ns by the standard RG1 test (I F=0.5A, I R=1A, and I RR=0.25A) and a breakdown voltage over 720 V. It is noteworthy that the p-layers in the active and termination regions can be formed at no extra cost for the use of self-alignment process. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By replacing the flat (Ga1-xAlx)As barrier layer with a trapezoidal AlxGa1-xAs barrier layer, a conventional heterostructure can be operated in enhancement mode. The sheet density of two-dimensional electron gas (2DEG) in the structure can be tuned linearly from N-2D = 0.3 x 10(11) cm(-2) to N-2D = 4.3 x 10(11) cm(-2) by changing the bias on the top gate. The present scheme for gated heterostructures is easy to fabricate and does not require the use of self-alignment photolithography or the deposition of insulating layers. In addition, this scheme facilitates the initial electrical contact to 2DEG. Although, the highest electron mobility obtained for the moment is limited by the background doping level of heterostructures, the mobility should be improved substantially in the future. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

.In this letter, we demonstrate for the first time that gate misalignment is not a critical limiting factor for low voltage operation in gate-underlap double gate (DG) devices. Our results show that underlap architecture significantly extends the tolerable limit of gate misalignment in 25 nm devices. DG MOSFETs with high degree of gate misalignment and optimal gate-underlap design can perform comparably or even better than self-aligned nonunderlap devices. Results show that spacer-to-straggle (s/sigma) ratio, a key design parameter for underlap devices, should be within the range of 2.3-3.0 to accommodate back gate misalignment. These results are very significant as the stringent process control requirements for achieving self-alignment in nanoscale planar DG MOSFETs are considerably relaxed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, by investigating the influence of source/drain (S/D) extension region engineering (also known as gate-underlap architecture) in planar Double Gate (DG) SOI MOSFETs, we offer new design insights to achieve high tolerance to gate misalignment/oversize in nanoscale devices for ultra-low-voltage (ULV) analog/rf applications. Our results show that (i) misaligned gate-underlap devices perform significantly better than DC devices with abrupt source/drain junctions with identical misalignment, (ii) misaligned gate underlap performance (with S/D optimization) exceeds perfectly aligned DG devices with abrupt S/D regions and (iii) 25% back gate misalignment can be tolerated without any significant degradation in cut-off frequency (f(T)) and intrinsic voltage gain (A(VO)). Gate-underlap DG devices designed with spacer-to-straggle ratio lying within the range 2.5 to 3.0 show best tolerance to misaligned/oversize back gate and indeed are better than self-aligned DG MOSFETs with non-underlap (abrupt) S/D regions. Impact of gate length and silicon film thickness scaling is also discussed. These results are very significant as the tolerable limit of misaligned/oversized back gate is considerably extended and the stringent process control requirements to achieve self-alignment can be relaxed for nanoscale planar ULV DG MOSFETs operating in weak-inversion region. The present work provides new opportunities for realizing future ULV analog/rf design with nanoscale gate-underlap DG MOSFETs. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) represents the parent compound of a novel class of broad-spectrum anti-parasitic compounds named thiazolides. NTZ is active against a wide variety of intestinal and tissue-dwelling helminths, protozoa, enteric bacteria and a number of viruses infecting animals and humans. While potent, this poses a problem in practice, since this obvious non-selectivity can lead to undesired side effects in both humans and animals. In this study, we used real time PCR to determine the in vitro activities of 29 different thiazolides (NTZ-derivatives), which carry distinct modifications on both the thiazole- and the benzene moieties, against the tachyzoite stage of the intracellular protozoan Neospora caninum. The goal was to identify a highly active compound lacking the undesirable nitro group, which would have a more specific applicability, such as in food animals. By applying self-organizing molecular field analysis (SOMFA), these data were used to develop a predictive model for future drug design. SOMFA performs self-alignment of the molecules, and takes into account the steric and electrostatic properties, in order to determine 3D-quantitative structure activity relationship models. The best model was obtained by overlay of the thiazole moieties. Plotting of predicted versus experimentally determined activity produced an r2 value of 0.8052 and cross-validation using the "leave one out" methodology resulted in a q2 value of 0.7987. A master grid map showed that large steric groups at the R2 position, the nitrogen of the amide bond and position Y could greatly reduce activity, and the presence of large steric groups placed at positions X, R4 and surrounding the oxygen atom of the amide bond, may increase the activity of thiazolides against Neospora caninum tachyzoites. The model obtained here will be an important predictive tool for future development of this important class of drugs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ge/Si multilayer structures with a bimodal distribution of the island spacing in the first layer have been investigated by atomic-force microscopy and transmission electron microscopy. Besides the vertical alignment, some oblique alignments of stacked islands are observed. The presence of the elastic interaction between islands is responsible for the oblique alignment of stacked islands. (C) 2000 American Institute of Physics. [S0003-6951(00)04644-1].