985 resultados para selection lines


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of environmental stress on the physiology and behaviour of higher vertebrates has become an important avenue of research in recent years. Evidence from recent studies has suggested that the avian stress-related hormone corticosterone (CORT) may play a role in immunocompetence and sexual selection. We tested whether CORT is immunosuppressive by studying humoral and cell-mediated immune responses in populations of captive zebra finches selected for divergent peak levels of CORT. We also investigated whether selection for peak CORT has an effect on the quality of several sexually selected regions of the male zebra finch; in addition we compared morphometric parameters and the dominance ranking in males from the different selection lines. We also tested whether different components of the immune system compete for limited resources. We found that selection for divergent levels of peak CORT had little effect on humoral immunity, male sexual signal quality or dominance ranking. However, contrary to expectations, we did find a positive relationship between CORT titre and cell-mediated immunity, as well as a greater cell-mediated response in the birds selected for high CORT titre than those selected for low CORT titre. Consistent with predictions, significant negative relationships were found between both testosterone and CORT titre on humoral immunity. Birds from the low CORT lines were significantly larger in terms of skeletal size than those from the high CORT lines. Overall, our results suggest that the cell-mediated immune response is associated with a reduction in the humoral response, but only in males, and that there is no simple relationship between peak CORT levels and immune function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The immunocompetence handicap hypothesis (ICHH) suggests that the male sex hormone testosterone has a dual effect; it controls the development and expression of male sexually selected signals, and it suppresses the immune system. Therefore only high quality males are able to fully express secondary sexual traits because only they can tolerate the immunosuppressive qualities of testosterone. A modified version of the ICHH suggests that testosterone causes immunosuppression indirectly by increasing the stress hormone corticosterone (CORT). Lines of Japanese quail (Coturnix japonica) selected for divergent responses in levels of plasma CORT were used to test these hypotheses. Within each CORT response line (as well as in a control stock) we manipulated levels of testosterone in castrated quail by treatment with zero (sham), low or high testosterone implants, before testing the birdsʼ humoral immunity and phytohaemagglutinin (PHA)-induced immune response, as well as body condition. The PHA-induced response was not significantly affected by CORT selected line, testosterone treatment or their interaction. There was, however, a significant effect of CORT line on humoral immunity in that the control birds exhibited the greatest antibody production, but there was no significant effect of testosterone manipulation on humoral immunity. The males in the sham implant treatment group had significantly greater mass than the males in the high testosterone group, suggesting a negative effect of high testosterone on general body condition. We discuss these results in the context of current hypotheses in the field of sexual selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the green-veined white butterfly (Pieris napi), females obtain direct fitness benefits from mating multiply and studies have shown that fitness increases seemingly monotonically with number of matings. The reason is that at mating males transfer a large nutritious gift (a so called nuptial gift) to the females that the females use to increase both their fecundity and lifespan. In addition, if exposed to poor food conditions as larvae, females mature at a smaller size compared to males. Accordingly, it was suggested that smaller females could compensate for their size through nuptial feeding by, for instance, mating more frequently. We did not find any support for that hypothesis. On the contrary, larger females remated sooner and had a higher lifetime number of matings. Neither were smaller females able to compensate in any other way, because singly mated females and multiply mated females suffered to the same extent from their smaller size. This thesis also shows that despite the positive relationship between fitness and number of matings, there is a large variation in female mating frequency in wild populations and about every second female mates only once or twice. This variation is not dependent on how often females get courted by males, because female mating frequency was shown not to be affected by male courtship intensity. Hence, the reason for the low mating frequency could either be that males have evolved the ability to manipulate females to mate at a suboptimal rate as a measure of protection against sperm competition, or alternatively, that female mating rate is suppressed by some costs. Using two selection lines, artificially selected for either a high or a low mating rate, we showed that the variation in mating rate was mainly a female trait because which line the females were from affected their mating rate whereas which line the male was from did not. This implies that females mate at a low rate due to hidden costs or due to constraints. The same study also showed that females with a high "intrinsic" mating rate lived shorter, but only when denied remating. This led us to test the hypothesis that the cost females face is to have the ability to mate at a high rate but the cost is only paid when remating opportunities are scarce. However, we found no support for such an idea, because females with a high intrinsic mating rate held in a cold environment where the butterflies were prevented from flying and feeding did not live shorter. Neither was there an effect of a female’s mating rate on her ability to quickly break down and convert male nutrient gifts into egg material. Female mating rate did, on the other hand, affect dispersal tendency, with low mating rate females being more inclined to fly between different habitats. The underlying reason for this is still to be explored.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large- and small-brained individuals. Instead, we found that large-brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plants transformed with Agrobacterium frequently contain T-DNA concatamers with direct-repeat (d/r) or inverted-repeat (i/r) transgene integrations, and these repetitive T-DNA insertions are often associated with transgene silencing. To facilitate the selection of transgenic lines with simple T-DNA insertions, we constructed a binary vector (pSIV) based on the principle of hairpin RNA (hpRNA)-induced gene silencing. The vector is designed so that any transformed cells that contain more than one insertion per locus should generate hpRNA against the selective marker gene, leading to its silencing. These cells should, therefore, be sensitive to the selective agent and less likely to regenerate. Results from Arabidopsis and tobacco transformation showed that pSIV gave considerably fewer transgenic lines with repetitive insertions than did a conventional T-DNA vector (pCON). Furthermore, the transgene was more stably expressed in the pSIV plants than in the pCON plants. Rescue of plant DNA flanking sequences from pSIV plants was significantly more frequent than from pCON plants, suggesting that pSIV is potentially useful for T-DNA tagging. Our results revealed a perfect correlation between the presence of tail-to-tail inverted repeats and transgene silencing, supporting the view that read-through hpRNA transcript derived from i/r T-DNA insertions is a primary inducer of transgene silencing in plants. © CSIRO 2005.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective To attenuate two strains of Eimeria tenella by selecting for precocious development and evaluate the strains in characterisation trials and by field evaluation, to choose one precocious line for incorporation into an Australian live coccidiosis vaccine for poultry. Design Two strains from non-commercial flocks were passaged through chickens while selecting for precocious development. Each strain was characterised for drug sensitivity, pathogenicity, protection against homologous and heterologous challenge, and oocyst output in replicated experiments in which the experimental unit was a cage of three birds. Oocyst output and/or body weight gain data collected over a 10 to 12 day period following final inoculation were measured. Feed conversion ratios were also calculated where possible. Results Fifteen passages resulted in prepatent periods reduced by 24 h for the Redlands strain (from 144 h to 120 h)and 23 h for the Darryl strain (from 139 h to 116 h). Characterisation trials demonstrated that each precocious line was significantly less pathogenic than its parent strain and each effectively induced immunity that protected chickens against challenge with both the parent strain and other virulent field strains. Both lines had oocyst outputs that, although significantly reduced relative to the parent strains, remained sufficiently high for commercial vaccine production, and both showed susceptibility to coccidiostats. Conclusion Two attenuated lines have been produced that exhibit the appropriate characteristics for use in an Australian live coccidiosis vaccine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objectives of this study were to investigate the genetic variability and select elite lines for CT, since these lines aggregate essential agronomic traits.