999 resultados para selection force


Relevância:

60.00% 60.00%

Publicador:

Resumo:

花是被子植物特有的繁殖器官。花的发育取决于一个复杂的涉及到多个基因和过程的调控体系,因此花的起源和多样化过程实际上可以理解为这个调控体系的进化过程。所以,要全面地理解花和被子植物的起源和多样化,就必须研究花发育基因的功能和进化。 金粟兰科(Chloranthaceae)是基部被子植物的代表类群之一。与研究得比较深入的模式植物(如真双子叶植物中的拟南芥、金鱼草和矮牵牛等,和单子叶植物中的水稻和玉米等)相比,该科植物的花比较简单。花被以及雄蕊或雌蕊的丢失使得该科一些类群(如草珊瑚属Sarcandra和金粟兰属Chloranthus)具有被子植物中最简单的两性花(仅含一枚雄蕊和一枚雌蕊),而另一些类群(如Ascarina和雪香兰属Hedyosmum)具有了被子植物中最简单的单性花(雄花仅由一枚雄蕊、雌花由一枚雌蕊构成)。因此,对金粟兰科植物中花发育基因的研究不仅有助于理解花的起源和早期分化机制,还将为认识花部构造简单化的机制提供资料。 本研究以金粟兰(Chloranthus spicatus)为研究材料,从它的花和花序中分离得到了六个可能与花被的发生和发育有关的MADS-box基因,分析了它们的序列结构、系统发育关系、表达式样和进化中所受到的选择压力,探讨了金粟兰花发育和花被缺失的分子机理。主要研究结果包括: 1. 构建了金粟兰的花和花序的cDNA文库。构建工作使用了Clontech公司的SMART试剂盒,并采用其中的LD PCR方法,还使用了Stratagene公司的包装蛋白。该文库的初始滴度大约为5 × 106 pfu,重组率大约是90%, 插入片断几乎均大于0.5 kb。因此该文库质量优良,为以后的研究工作奠定了基础。 2. 从金粟兰的花中分离出了CsAP1、CsAP1a、CsAP1b、CsAP1c、CsAP3和CsSEP3基因。氨基酸序列分析结果表明它们都是MIKCc型MADS-box基因。系统发育分析结果表明CsAP1、CsAP1a、CsAP1b和CsAP1c与AP1/SQUA类基因聚在一起,而CsAP3和CsSEP3分别与AP3/DEF类和SEP1/2/3/4类基因聚在一起。CsAP1b和CsAP1c可能与CsAP1a互为复制本。但是二者在序列上有异常之处,因此可能只有CsAP1a具有功能。从序列上看CsAP1和CsSEP3能够正常行使功能。CsAP3的C末端出现了一个由鸟嘌呤到胸腺嘧啶的点突变,因此paleoAP3基序不完整,这可能影响了它的功能。 3. 用原位杂交的方法分析了CsAP1、CsAP3和CsSEP3的表达式样。CsAP1在穗状花序分生组织(包括苞片原基)、花原基、雄蕊和心皮原基、雄蕊裂片、花粉囊、胚珠、珠被和胚囊中表达。CsAP3在穗状花序分生组织中不表达,在花原基上发生雄蕊的位置开始表达,进而在雄蕊原基、雄蕊药隔裂片和花粉囊中表达,却不在心皮原基和心皮上表达。CsSEP3在穗状花序分生组织中也不表达,而在花原基、雄蕊原基、药隔裂片、花粉囊、心皮原基和胚珠中表达。CsAP1的表达模式反映了A功能基因决定花分生组织特性的原始作用;CsAP3的表达模式体现了B功能基因在雄性器官中的固有表达,反映了该类基因在两性器官分化中的原始作用;CsSEP3的表达模式反映了E功能基因提供成花背景(floral context)的作用。 4. 分析了已知的金粟兰的花发育相关基因受到的选择压力。同大多数近缘同源基因相比,CsAP1、CsAP3、CsPI、CsAG1受到负选择并且其强度没有明显差异;CsAG2和CsSEP3受到了更强的负选择;CsAP1a则受到减轻了的负选择。该结果表明除了CsAP1a之外,其它基因的功能可能没有改变。 5. 综上所述,在无花被的金粟兰中,仍然存在着与花被发育相关的基因,并且它们的功能没有改变,这充分反映了花发育ABC模型的保守性。金粟兰中花被的缺失可能与这些基因的下游基因有关,也可能与其它途径相关。CsAP1的复制以及CsAP3的末端突变可能是花被缺失之后的结果,而不是花被缺失的原因。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent findings are reported about certain aspects of the structure and function of the mammalian and avian lungs that include (a) the architecture of the air capillaries (ACs) and the blood capillaries (BCs); (b) the pulmonary blood capillary circulatory dynamics; (c) the adaptive molecular, cellular, biochemical, compositional, and developmental characteristics of the surfactant system; (d) the mechanisms of the translocation of fine and ultrafine particles across the airway epithelial barrier; and (e) the particle-cell interactions in the pulmonary airways. In the lung of the Muscovy duck Cairina moschata, at least, the ACs are rotund structures that are interconnected by narrow cylindrical sections, while the BCs comprise segments that are almost as long as they are wide. In contrast to the mammalian pulmonary BCs, which are highly compliant, those of birds practically behave like rigid tubes. Diving pressure has been a very powerful directional selection force that has influenced phenotypic changes in surfactant composition and function in lungs of marine mammals. After nanosized particulates are deposited on the respiratory tract of healthy human subjects, some reach organs such as the brain with potentially serious health implications. Finally, in the mammalian lung, dendritic cells of the pulmonary airways are powerful agents in engulfing deposited particles, and in birds, macrophages and erythrocytes are ardent phagocytizing cellular agents. The morphology of the lung that allows it to perform different functions-including gas exchange, ventilation of the lung by being compliant, defense, and secretion of important pharmacological factors-is reflected in its "compromise design."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

African cichlid fishes have undergone outbursts of explosive speciation in several lakes, accompanied by rapid radiations in coloration and ecology. Little is known about the evolutionary forces that triggered these events but a hypothesis, published by Wallace Dominey in 1984, has figured prominently. It states that the evolution of colour patterns is driven by sexual selection and that these colour patterns are important in interspecific mate choice, a combination which holds the potential for rapid speciation. Here we present phylogenetic analyses that describe major events in colour evolution and test predictions yielded by Dominey's hypothesis. We assembled information on stripe patterns and the presence or absence of nuptial coloration from more than 700 cichlid species representing more than 90 taxa for which molecular phylogenetic hypotheses were available. We show that sexual selection is most likely the selection force that made male nuptial coloration arise and evolve quickly. In contrast, stripe patterns, though phylogenetically not conserved either, are constrained ecologically. The evolution of vertical bar patterns is associated with structurally complex habitats, such as rocky substrates or vegetation. The evolution of a horizontal stripe is associated with a piscivorous feeding mode. Horizontal stripes are also associated with shoaling behaviour. Strength of sexual selection, measured in terms of the mating system (weak in monogamous, strong in promiscuous species), has no detectable effects on stripe pattern evolution. In promiscuous species the frequency of difference between sister species in nuptial hue is higher than in pair bonding and harem forming species, but the frequency of difference in stripe pattern is lower. We argue that differences between the two components of coloration in their exposure to natural selection explain their very different evolutionary behaviour. Finally, we suggest that habitat-mediated selection upon chromomotor flexibility, a special form of phenotypic plasticity found in the river-dwelling outgroups of the lake-dwelling cichlids, explains the rapid and recurrent ecology-associated radiation of stripe patterns in lake environments, a new hypothesis that yields experimentally testable predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aetiology behind overuse injuries such as stress fractures is complex and multi-factorial. In sporting events where the loading is likely to be uneven (e.g. hurdling and jumps), research has suggested that the frequency of stress fractures seems to favour the athlete’s dominant limb. The tendency for an individual to have a preferred limb for voluntary motor acts makes limb selection a possible factor behind the development of unilateral overuse injuries, particularly when repeatedly used during high loading activities. The event of sprint hurdling is well suited for the study of loading asymmetry as the hurdling technique is repetitive and the limb movement asymmetrical. Of relevance to this study is the high incidence of Navicular Stress Fractures (NSF) in hurdlers, with suggestions there is a tendency for the fracture to develop in the trail leg foot, although this is not fully accepted. The Ground Reaction Force (GRF) with each foot contact is influenced by the hurdle action, with research finding step-to-step loading variations. However, it is unknown if this loading asymmetry extends to individual forefoot joints, thereby influencing stress fracture development. The first part of the study involved a series of investigations using a commercially available matrix style in-shoe sensor system (FscanTM, Tekscan Inc.). The suitability of insole sensor systems and custom made discrete sensors for use in hurdling-related training activities was assessed. The methodology used to analyse foot loading with each technology was investigated. The insole and discrete sensors systems tested proved to be unsuitable for use during full pace hurdling. Instead, a running barrier task designed to replicate the four repetitive foot contacts present during hurdling was assessed. This involved the clearance of a series of 6 barriers (low training hurdles), place in a straight line, using 4 strides between each. The second part of the study involved the analysis of "inter-limb" and "within foot loading asymmetries" using stance duration as well as vertical GRF under the Hallux (T1), the first metatarsal head (M1) and the central forefoot peak pressure site (M2), during walking, running, and running with barrier clearances. The contribution to loading asymmetry that each of the four repetitive foot contacts made during a series of barrier clearances was also assessed. Inter-limb asymmetry, in forefoot loading, occurred at discrete forefoot sites in a non-uniform manner across the three gait conditions. When the individual barrier foot contacts were compared, the stance duration was asymmetrical and the proportion of total forefoot load at M2 was asymmetrical. There were no significant differences between the proportion of forefoot load at M1, compared to M2; for any of the steps involved in the barrier clearance. A case study testing experimental (discrete) sensors during full pace sprinting and hurdling found that during both gait conditions, the trail limb experienced the greater vertical GRF at M1 and M2. During full pace hurdling, increased stance duration and vertical loading was a characteristic of the trail limb hurdle foot contacts. Commercially available in-shoe systems are not suitable for on field assessment of full pace hurdling. For the use of discrete sensor technology to become commonplace in the field, more robust sensors need to be developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Sudan Chickpea chlorotic dwarf virus (CpCDV, genus Mastrevirus, family Geminiviridae) is an important pathogen of pulses that are grown both for local consumption, and for export. Although a few studies have characterised CpCDV genomes from countries in the Middle East, Africa and the Indian subcontinent, little is known about CpCDV diversity in any of the major chickpea production areas in these regions. Here we analyse the diversity of 146 CpCDV isolates characterised from pulses collected across the chickpea growing regions of Sudan. Although we find that seven of the twelve known CpCDV strains are present within the country, strain CpCDV-H alone accounted for ∼73% of the infections analysed. Additionally we identified four new strains (CpCDV-M, -N, -O and -P) and show that recombination has played a significant role in the diversification of CpCDV, at least in this region. Accounting for observed recombination events, we use the large amounts of data generated here to compare patterns of natural selection within protein coding regions of CpCDV and other dicot-infecting mastrevirus species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ropalidia marginata is a primitively eusocial wasp widely distributed in peninsular India. Although solitary females found a small proportion of nests, the vast majority of new nests are founded by small groups of females. In suchmultiple foundress nests, a single dominant female functions as the queen and lays eggs, while the rest function as sterile workers and care for the queen's brood. Previous attempts to understand the evolution of social behaviour and altruism in this species have employed inclusive fitness theory (kin selection) as a guiding framework. Although inclusive fitness theory is quite successful in explaining the high propensity of the wasps to found nests in groups, several features of their social organization suggest that forces other than kin selection may also have played a significant role in the evolution of this species. These features include lowering of genetic relatedness owing to polyandry and serial polygyny, nest foundation by unrelated individuals, acceptance of young non-nest-mates, a combination of well-developed nest-mate recognition and lack of intra-colony kin recognition, a combination of meek and docile queens and a decentralized self-organized work force, long reproductive queues with cryptic heir designates and conflict-free queen succession, all resulting in extreme intra-colony cooperation and inter-colony conflict.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We aimed to study the selective pressures interacting on SLC45A2 to investigate the interplay between selection and susceptibility to disease. Thus, we enrolled 500 volunteers from a geographically limited population (Basques from the North of Spain) and by resequencing the whole coding region and intron 5 of the 34 most and the 34 least pigmented individuals according to the reflectance distribution, we observed that the polymorphism Leu374Phe (L374F, rs16891982) was statistically associated with skin color variability within this sample. In particular, allele 374F was significantly more frequent among the individuals with lighter skin. Further genotyping an independent set of 558 individuals of a geographically wider population with known ancestry in the Spanish population also revealed that the frequency of L374F was significantly correlated with the incident UV radiation intensity. Selection tests suggest that allele 374F is being positively selected in South Europeans, thus indicating that depigmentation is an adaptive process. Interestingly, by genotyping 119 melanoma samples, we show that this variant is also associated with an increased susceptibility to melanoma in our populations. The ultimate driving force for this adaptation is unknown, but it is compatible with the vitamin D hypothesis. This shows that molecular evolution analysis can be used as a useful technology to predict phenotypic and biomedical consequences in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to determine effective pulse limits for Salmo irideus, Cyprinus carpio, Gasterosteus aculeatus, Tinca tinca, Salmo fario and ldus melanotus in impulse D. C. for galvanotaxis and galvanonarcosis, studies were carried out with rectangular and square impulses. The narcotizing pulse limits remained constant for each variety in an impulse D. C. of specific wave form. The anodic effect of fishes was better in square wave form and varied with the variation of temperature of surrounding medium. S. fario reacted better when placed parallel to the lines of electrical force. Transversal escape movement occured when the axis of fish body was at right angles to the direction of current.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impedance control can be used to stabilize the limb against both instability and unpredictable perturbations. Limb posture influences motor noise, energy usage and limb impedance as well as their interaction. Here we examine whether subjects use limb posture as part of a mechanism to regulate limb stability. Subjects performed stabilization tasks while attached to a two dimensional robotic manipulandum which generated a virtual environment. Subjects were instructed that they could perform the stabilization task anywhere in the workspace, while the chosen postures were tracked as subjects repeated the task. In order to investigate the mechanisms behind the chosen limb postures, simulations of the neuro-mechanical system were performed. The results indicate that posture selection is performed to provide energy efficiency in the presence of force variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3D virtual reality environment to determine the position of objects based on motion discotinuities, and computes heading direction, or the direction of self-motion, from global optic flow. The cortical representation of heading interacts with the representations of a goal and obstacles such that the goal acts as an attractor of heading, while obstacles act as repellers. In addition the model maintains fixation on the goal object by generating smooth pursuit eye movements. Eye rotations can distort the optic flow field, complicating heading perception, and the model uses extraretinal signals to correct for this distortion and accurately represent heading. The model explains how motion processing mechanisms in cortical areas MT, MST, and VIP can be used to guide steering. The model quantitatively simulates human psychophysical data about visually-guided steering, obstacle avoidance, and route selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3D virtual reality environment to determine the position of objects based on motion discontinuities, and computes heading direction, or the direction of self-motion, from global optic flow. The cortical representation of heading interacts with the representations of a goal and obstacles such that the goal acts as an attractor of heading, while obstacles act as repellers. In addition the model maintains fixation on the goal object by generating smooth pursuit eye movements. Eye rotations can distort the optic flow field, complicating heading perception, and the model uses extraretinal signals to correct for this distortion and accurately represent heading. The model explains how motion processing mechanisms in cortical areas MT, MST, and posterior parietal cortex can be used to guide steering. The model quantitatively simulates human psychophysical data about visually-guided steering, obstacle avoidance, and route selection.