988 resultados para seismic imaging
Resumo:
We present new Rayleigh-wave dispersion maps of the western Iberian Peninsula for periods between 8 and 30 s, obtained from correlations of seismic ambient noise, following the recent increase in seismic broadband network density in Portugal and Spain. Group velocities have been computed for each station pair using the empirical Green's functions generated by cross-correlating one-day-length seismic ambient-noise records. The resulting high-path density allows us to obtain lateral variations of the group velocities as a function of period in cells of 0.5 degrees x 0.5 degrees with an unprecedented resolution. As a result we were able to address some of the unknowns regarding the lithospheric structure beneath SW Iberia. The dispersion maps allow the imaging of the major structural units, namely the Iberian Massif, and the Lusitanian and Algarve Meso-Cenozoic basins. The Cadiz Gulf/Gibraltar Strait area corresponds to a strong low-velocity anomaly, which can be followed to the largest period inverted, although slightly shifted to the east at longer periods. Within the Iberian Massif, second-order perturbations in the group velocities are consistent with the transitions between tectonic units composing the massif. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
An efficient high-resolution (HR) three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings was developed. In Lake Geneva, near the city of Lausanne, Switzerland, the offshore extension of a complex fault zone well mapped on land was chosen for testing our system. A preliminary two-dimensional seismic survey indicated structures that include a thin (<40 m) layer of subhorizontal Quaternary sediments that unconformably overlie south-east-dipping Tertiary Molasse beds and a major fault zone (Paudeze Fault Zone) that separates Plateau and Subalpine Molasse (SM) units. A 3D survey was conducted over this test site using a newly developed three-streamer system. It provided high-quality data with a penetration to depths of 300 m below the water bottom of non-aliased signal for dips up to 30degrees and with a maximum vertical resolution of 1.1 m. The data were subjected to a conventional 3D processing sequence that included post-stack time migration. Tests with 3D pre-stack depth migration showed that such techniques can be applied to HR seismic surveys. Delineation of several horizons and fault surfaces reveals the potential for small-scale geologic and tectonic interpretation in three dimensions. Five major seismic facies and their detailed 3D geometries can be distinguished. Three fault surfaces and the top of a molasse surface were mapped in 3D. Analysis of the geometry of these surfaces and their relative orientation suggests that pre-existing structures within the Plateau Molasse (PM) unit influenced later faulting between the Plateau and SM. In particular, a change in strike of the PM bed dip may indicate a fold formed by a regional stress regime, the orientation of which was different from the one responsible for the creation of the Paudeze Fault Zone. This structure might have later influenced the local stress regime and caused the curved shape of the Paudeze Fault in our surveyed area.
Resumo:
The southern Apennines of Italy have been experienced several destructive earthquakes both in historic and recent times. The present day seismicity, characterized by small-to-moderate magnitude earthquakes, was used like a probe to obatin a deeper knowledge of the fault structures where the largest earthquakes occurred in the past. With the aim to infer a three dimensional seismic image both the problem of data quality and the selection of a reliable and robust tomographic inversion strategy have been faced. The data quality has been obtained to develop optimized procedures for the measurements of P- and S-wave arrival times, through the use of polarization filtering and to the application of a refined re-picking technique based on cross-correlation of waveforms. A technique of iterative tomographic inversion, linearized, damped combined with a strategy of multiscale inversion type has been adopted. The retrieved P-wave velocity model indicates the presence of a strong velocity variation along a direction orthogonal to the Apenninic chain. This variation defines two domains which are characterized by a relatively low and high velocity values. From the comparison between the inferred P-wave velocity model with a portion of a structural section available in literature, the high velocity body was correlated with the Apulia carbonatic platforms whereas the low velocity bodies was associated to the basinal deposits. The deduced Vp/Vs ratio shows that the ratio is lower than 1.8 in the shallower part of the model, while for depths ranging between 5 km and 12 km the ratio increases up to 2.1 in correspondence to the area of higher seismicity. This confirms that areas characterized by higher values are more prone to generate earthquakes as a response to the presence of fluids and higher pore-pressures.
Resumo:
Microstructures and textures of calcite mylonites from the Morcles nappe large-scale shear zone in southwestern Switzerland develop principally as a function of 1) extrinsic physical parameters including temperature, stress, strain, strain rate and 2) intrinsic parameters, such as mineral composition. We collected rock samples at a single location from this shear zone, on which laboratory ultrasonic velocities, texture and microstructures were investigated and quantified. The samples had different concentration of secondary mineral phases (< 5 up to 40 vol.%). Measured seismic P wave anisotropy ranges from 6.5% for polyphase mylonites (~ 40 vol.%) to 18.4% in mylonites with < 5 vol.% secondary phases. Texture strength of calcite is the main factor governing the seismic P wave anisotropy. Measured S wave splitting is generally highest in the foliation plane, but its origin is more difficult to explain solely by calcite texture. Additional texture measurements were made on calcite mylonites with low concentration of secondary phases (≤ 10 vol.%) along the metamorphic gradient of the shear zone (15 km distance). A systematic increase in texture strength is observed moving from the frontal part of the shear zone (anchimetamorphism; 280 °C) to the higher temperature, basal part (greenschist facies; 350–400 °C). Calculated P wave velocities become increasingly anisotropic towards the high-strain part of the nappe, from an average of 5.8% in the frontal part to 13.2% in the root of the basal part. Secondary phases raise an additional complexity, and may act either to increase or decrease seismic anisotropy of shear zone mylonites. In light of our findings we reinterpret the origin of some seismically reflective layers in the Grône–Zweisimmen line in southwestern Switzerland (PNR20 Swiss National Research Program). We hypothesize that reflections originate in part from the lateral variation in textural and microstructural arrangement of calcite mylonites in shear zones.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
High-resolution tomographic imaging of the shallow subsurface is becoming increasingly important for a wide range of environmental, hydrological and engineering applications. Because of their superior resolution power, their sensitivity to pertinent petrophysical parameters, and their far reaching complementarities, both seismic and georadar crosshole imaging are of particular importance. To date, corresponding approaches have largely relied on asymptotic, ray-based approaches, which only account for a very small part of the observed wavefields, inherently suffer from a limited resolution, and in complex environments may prove to be inadequate. These problems can potentially be alleviated through waveform inversion. We have developed an acoustic waveform inversion approach for crosshole seismic data whose kernel is based on a finite-difference time-domain (FDTD) solution of the 2-D acoustic wave equations. This algorithm is tested on and applied to synthetic data from seismic velocity models of increasing complexity and realism and the results are compared to those obtained using state-of-the-art ray-based traveltime tomography. Regardless of the heterogeneity of the underlying models, the waveform inversion approach has the potential of reliably resolving both the geometry and the acoustic properties of features of the size of less than half a dominant wavelength. Our results do, however, also indicate that, within their inherent resolution limits, ray-based approaches provide an effective and efficient means to obtain satisfactory tomographic reconstructions of the seismic velocity structure in the presence of mild to moderate heterogeneity and in absence of strong scattering. Conversely, the excess effort of waveform inversion provides the greatest benefits for the most heterogeneous, and arguably most realistic, environments where multiple scattering effects tend to be prevalent and ray-based methods lose most of their effectiveness.
Resumo:
We dedicate this paper to the memory of Prof. Andres Perez Estaún, who was a great and committed scientist, wonderful colleague and even better friend. The datasets in this work have been funded by Fundación Ciudad de la Energía (Spanish Government, www.ciuden.es) and by the European Union through the “European Energy Programme 15 for Recovery” and the Compostilla OXYCFB300 project. Dr. Juan Alcalde is currently funded by NERC grant NE/M007251/1. Simon Campbell and Samuel Cheyney are acknowledged for thoughtful comments on gravity inversion
Resumo:
The optimum bandwidth for shallow, high-resolution seismic reflection differs from that required for conventional petroleum reflection. An understanding of this issue is essential for correct choice of acquisition instrumentation. Numerical modelling of simple Bowen Basin coal structures illustrates that, for high-resolution imaging, it is important to accurately record all frequencies up to the limit imposed by earth scattering. On the contrary, the seismic image is much less dependent on frequencies at the lower end of the spectrum. These quantitative observations support the use of specialised high-frequency geophones for high-resolution seismic imaging. Synthetic seismic inversion trials demonstrate that, irrespective of the bandwidth of the seismic data, additional low-frequency impedance control is essential for accurate inversion. Inversion provides no compelling argument for the use of conventional petroleum geophones in the high-resolution arena.
Resumo:
The Ultra Weak Variational Formulation (UWVF) is a powerful numerical method for the approximation of acoustic, elastic and electromagnetic waves in the time-harmonic regime. The use of Trefftz-type basis functions incorporates the known wave-like behaviour of the solution in the discrete space, allowing large reductions in the required number of degrees of freedom for a given accuracy, when compared to standard finite element methods. However, the UWVF is not well disposed to the accurate approximation of singular sources in the interior of the computational domain. We propose an adjustment to the UWVF for seismic imaging applications, which we call the Source Extraction UWVF. Differing fields are solved for in subdomains around the source, and matched on the inter-domain boundaries. Numerical results are presented for a domain of constant wavenumber and for a domain of varying sound speed in a model used for seismic imaging.
Resumo:
With the growth of energy consumption worldwide, conventional reservoirs, the reservoirs called "easy exploration and production" are not meeting the global energy demand. This has led many researchers to develop projects that will address these needs, companies in the oil sector has invested in techniques that helping in locating and drilling wells. One of the techniques employed in oil exploration process is the reverse time migration (RTM), in English, Reverse Time Migration, which is a method of seismic imaging that produces excellent image of the subsurface. It is algorithm based in calculation on the wave equation. RTM is considered one of the most advanced seismic imaging techniques. The economic value of the oil reserves that require RTM to be localized is very high, this means that the development of these algorithms becomes a competitive differentiator for companies seismic processing. But, it requires great computational power, that it still somehow harms its practical success. The objective of this work is to explore the implementation of this algorithm in unconventional architectures, specifically GPUs using the CUDA by making an analysis of the difficulties in developing the same, as well as the performance of the algorithm in the sequential and parallel version
Resumo:
Oil prospecting is one of most complex and important features of oil industry Direct prospecting methods like drilling well logs are very expensive, in consequence indirect methods are preferred. Among the indirect prospecting techniques the seismic imaging is a relevant method. Seismic method is based on artificial seismic waves that are generated, go through the geologic medium suffering diffraction and reflexion and return to the surface where they are recorded and analyzed to construct seismograms. However, the seismogram contains not only actual geologic information, but also noise, and one of the main components of the noise is the ground roll. Noise attenuation is essential for a good geologic interpretation of the seismogram. It is common to study seismograms by using time-frequency transformations that map the seismic signal into a frequency space where it is easier to remove or attenuate noise. After that, data is reconstructed in the original space in such a way that geologic structures are shown in more detail. In addition, the curvelet transform is a new and effective spectral transformation that have been used in the analysis of complex data. In this work, we employ the curvelet transform to represent geologic data using basis functions that are directional in space. This particular basis can represent more effectively two dimensional objects with contours and lines. The curvelet analysis maps real space into frequencies scales and angular sectors in such way that we can distinguish in detail the sub-spaces where is the noise and remove the coefficients corresponding to the undesired data. In this work we develop and apply the denoising analysis to remove the ground roll of seismograms. We apply this technique to a artificial seismogram and to a real one. In both cases we obtain a good noise attenuation
Resumo:
The gravity inversion method is a mathematic process that can be used to estimate the basement relief of a sedimentary basin. However, the inverse problem in potential-field methods has neither a unique nor a stable solution, so additional information (other than gravity measurements) must be supplied by the interpreter to transform this problem into a well-posed one. This dissertation presents the application of a gravity inversion method to estimate the basement relief of the onshore Potiguar Basin. The density contrast between sediments and basament is assumed to be known and constant. The proposed methodology consists of discretizing the sedimentary layer into a grid of rectangular juxtaposed prisms whose thicknesses correspond to the depth to basement which is the parameter to be estimated. To stabilize the inversion I introduce constraints in accordance with the known geologic information. The method minimizes an objective function of the model that requires not only the model to be smooth and close to the seismic-derived model, which is used as a reference model, but also to honor well-log constraints. The latter are introduced through the use of logarithmic barrier terms in the objective function. The inversion process was applied in order to simulate different phases during the exploration development of a basin. The methodology consisted in applying the gravity inversion in distinct scenarios: the first one used only gravity data and a plain reference model; the second scenario was divided in two cases, we incorporated either borehole logs information or seismic model into the process. Finally I incorporated the basement depth generated by seismic interpretation into the inversion as a reference model and imposed depth constraint from boreholes using the primal logarithmic barrier method. As a result, the estimation of the basement relief in every scenario has satisfactorily reproduced the basin framework, and the incorporation of the constraints led to improve depth basement definition. The joint use of surface gravity data, seismic imaging and borehole logging information makes the process more robust and allows an improvement in the estimate, providing a result closer to the actual basement relief. In addition, I would like to remark that the result obtained in the first scenario already has provided a very coherent basement relief when compared to the known basin framework. This is significant information, when comparing the differences in the costs and environment impact related to gravimetric and seismic surveys and also the well drillings
Resumo:
A simulação de uma seção sísmica de afastamento nulo (AN) a partir de dados de cobertura múltipla para um meio 2-D, através do empilhamento, é um método de imageamento de reflexão sísmica muito utilizado, que permite reduzir a quantidade de dados e melhor a razão sinal/ruído. Baseado na aproximação hiperbólica dos tempos de trânsito dependente de três parâmetros ou atributos cinemáticos de frentes de onda, recentemente, vem desenvolvendo-se um novo método para simular seções (AN) chamado método de empilhamento sísmico por Superfície de Reflexão Comum (ou empilhamento SRC). Também, seguindo este novo conceito de imageamento sísmico está surgindo um método para simular seções com afastamento comum (AC) a partir de dados de cobertura múltipla usando aproximações dos tempos de trânsito paraxiais na vizinhança de um raio central com afastamento finito. Esta nova aproximação dos tempos de trânsito depende de cinco atributos cinemáticos. Neste trabalho, a partir da aproximação dos tempos de trânsito paraxiais em relação a um raio central com afastamento finito, derivamos uma nova equação do tempo de trânsito usando a condição de um ponto difrator em profundidade, reduzindo a equação original para quatro parâmetros. Para ambas aproximações (reflexão e difração), mostramos a superfície de empilhamento SRC com afastamento finito (SRC-AF). Considerando um modelo sintético, realizamos um estudo comparativo das aproximações dos tempos de trânsito para as quatro configurações sísmicas (fonte comum (FC), receptor comum (RC), ponto-médio-comum (PMC) e afastamento comum (AC)). Para analisar o comportamento do operador SRC-AF, quando este é perturbado, discutimos sua sensibilidade em relação a cada um dos cinco parâmetros (K1, K2, K3, βS e βG). Esta análise de sensibilidade é realizada em duas formas: Sensibilidade através da primeira derivada e Sensibilidade no Empilhamento SRC-AF. Após realizar a análise de sensibilidade utilizamos uma nova condição, K2 = 0 e assim, obtemos uma nova aproximação, agora dependente de três parâmetros. Usando essas aproximações hiperbólicas (em função de cinco, quatro e três parâmetros), propomos um algoritmo para a simulação de seções AC a partir de dados de cobertura múltipla. Finalmente, é apresentado um estudo da zona de Fresnel, com o objetivo de determinar a delimitação da abertura da superfície de empilhamento SRC-AF.
Resumo:
A determinação de um acurado modelo de velocidades é um requisito fundamental para a realização do imageamento sísmico. Métodos novos como a Estereotomografia préempilhamento e a Tomografia da onda NIP são ferramentas poderosas e bastante sugestivas para este propósito. Basicamente, a Estereotomografia pré-empilhamento se baseia no conceito de eventos localmente coerentes interpretados como reflexões primárias e associados com pares de segmentos de raios, que tem um mesmo ponto de reflexão em profundidade. Na Tomografia da onda NIP um evento sísmico é representado por uma onda hipotética NIP, que está relacionada a um ponto de reflexão em profundidade. Os atributos da onda NIP são determinados no decorrer do Empilhamento de Superfície de Reflexão Comum (empilhamento CRS). Este trabalho tem como objetivo, fazer um estudo comparativo de ambos os métodos de determinação do modelo de velocidades em profundidade. Assim, é realizada uma revisão dos fundamentos teóricos de ambos os métodos tomográficos, destacando as principais diferenças e aplicando estas aproximações em um dado sintético e um dado real marinho (linha sísmica 214-2660 da Bacia do Jequitinhonha). Para avaliar os modelos de velocidades encontrados pelas aproximações, foi utilizada a migração pré-empilhamento em profundidade do tipo Kirchhoff e também as famílias de imagem comum (CIG). Os resultados mostraram que ambos os métodos tomográficos fornecem modelos de velocidades representativos. Contudo, constatou-se que a estereotomografia tem melhor desempenho em meios com variações laterais de velocidades, porém, aplicável somente em dados pré-empilhados com alta razão sinal/ruído.