879 resultados para segmentation
Resumo:
AIM: To evaluate the effects of meal size and three segmentations on intragastric distribution of the meal and gastric motility, by scintigraphy. METHODS: Twelve healthy volunteers were randomly assessed, twice, by scintigraphy. The test meal consisted of 60 or 180 mL of yogurt labeled with 64 MBq (99m)Tc-tin colloid. Anterior and posterior dynamic frames were simultaneously acquired for 18 min and all data were analyzed in MatLab. Three proximal-distal segmentations using regions of interest were adopted for both meals. RESULTS: Intragastric distribution of the meal between the proximal and distal compartments was strongly influenced by the way in which the stomach was divided, showing greater proximal retention after the 180 mL. An important finding was that both dominant frequencies (1 and 3 cpm) were simultaneously recorded in the proximal and distal stomach; however, the power ratio of those dominant frequencies varied in agreement with the segmentation adopted and was independent of the meal size. CONCLUSION: It was possible to simultaneously evaluate the static intragastric distribution and phasic contractility from the same recording using our scintigraphic approach. (C) 2010 Baishideng. All rights reserved.
Resumo:
Positional information in developing embryos is specified by spatial gradients of transcriptional regulators. One of the classic systems for studying this is the activation of the hunchback (hb) gene in early fruit fly (Drosophila) segmentation by the maternally-derived gradient of the Bicoid (Bcd) protein. Gene regulation is subject to intrinsic noise which can produce variable expression. This variability must be constrained in the highly reproducible and coordinated events of development. We identify means by which noise is controlled during gene expression by characterizing the dependence of hb mRNA and protein output noise on hb promoter structure and transcriptional dynamics. We use a stochastic model of the hb promoter in which the number and strength of Bcd and Hb (self-regulatory) binding sites can be varied. Model parameters are fit to data from WT embryos, the self-regulation mutant hb(14F), and lacZ reporter constructs using different portions of the hb promoter. We have corroborated model noise predictions experimentally. The results indicate that WT (self-regulatory) Hb output noise is predominantly dependent on the transcription and translation dynamics of its own expression, rather than on Bcd fluctuations. The constructs and mutant, which lack self-regulation, indicate that the multiple Bcd binding sites in the hb promoter (and their strengths) also play a role in buffering noise. The model is robust to the variation in Bcd binding site number across a number of fly species. This study identifies particular ways in which promoter structure and regulatory dynamics reduce hb output noise. Insofar as many of these are common features of genes (e. g. multiple regulatory sites, cooperativity, self-feedback), the current results contribute to the general understanding of the reproducibility and determinacy of spatial patterning in early development.
Resumo:
Today several different unsupervised classification algorithms are commonly used to cluster similar patterns in a data set based only on its statistical properties. Specially in image data applications, self-organizing methods for unsupervised classification have been successfully applied for clustering pixels or group of pixels in order to perform segmentation tasks. The first important contribution of this paper refers to the development of a self-organizing method for data classification, named Enhanced Independent Component Analysis Mixture Model (EICAMM), which was built by proposing some modifications in the Independent Component Analysis Mixture Model (ICAMM). Such improvements were proposed by considering some of the model limitations as well as by analyzing how it should be improved in order to become more efficient. Moreover, a pre-processing methodology was also proposed, which is based on combining the Sparse Code Shrinkage (SCS) for image denoising and the Sobel edge detector. In the experiments of this work, the EICAMM and other self-organizing models were applied for segmenting images in their original and pre-processed versions. A comparative analysis showed satisfactory and competitive image segmentation results obtained by the proposals presented herein. (C) 2008 Published by Elsevier B.V.
Resumo:
Intravascular ultrasound (IVUS) image segmentation can provide more detailed vessel and plaque information, resulting in better diagnostics, evaluation and therapy planning. A novel automatic segmentation proposal is described herein; the method relies on a binary morphological object reconstruction to segment the coronary wall in IVUS images. First, a preprocessing followed by a feature extraction block are performed, allowing for the desired information to be extracted. Afterward, binary versions of the desired objects are reconstructed, and their contours are extracted to segment the image. The effectiveness is demonstrated by segmenting 1300 images, in which the outcomes had a strong correlation to their corresponding gold standard. Moreover, the results were also corroborated statistically by having as high as 92.72% and 91.9% of true positive area fraction for the lumen and media adventitia border, respectively. In addition, this approach can be adapted easily and applied to other related modalities, such as intravascular optical coherence tomography and intravascular magnetic resonance imaging. (E-mail: matheuscardosomg@hotmail.com) (C) 2011 World Federation for Ultrasound in Medicine & Biology.
Resumo:
The task of segmenting cell nuclei from cytoplasm in conventional Papanicolaou (Pap) stained cervical cell images is a classical image analysis problem which may prove to be crucial to the development of successful systems which automate the analysis of Pap smears for detection of cancer of the cervix. Although simple thresholding techniques will extract the nucleus in some cases, accurate unsupervised segmentation of very large image databases is elusive. Conventional active contour models as introduced by Kass, Witkin and Terzopoulos (1988) offer a number of advantages in this application, but suffer from the well-known drawbacks of initialisation and minimisation. Here we show that a Viterbi search-based dual active contour algorithm is able to overcome many of these problems and achieve over 99% accurate segmentation on a database of 20 130 Pap stained cell images. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
An important segmentation basis used by firms is related to consumers` personal values which are investigated in this study. It was used a descriptive research with the survey method of data collection in a sample of executives from Sao Paulo who are considered to be potential buyers of high value and innovative goods. An exploratory factor analysis was employed in order to reduce the values scale used and a cluster analysis was performed to identify the groups of executives according to the importance attached to different person values. Concluding, it was observed that there was a similarity among the three personal values dimensions, named as Civility (concerns about having a good conduct before society according to social rules of interaction), Self-Direction (intellectual aspects and practical orientation in their conducts) and Conformity (restriction of actions, inclinations and impulses, that are likely to harm others and would violate expectations) and the ones reported in the theory Rokeach`s theory about instrumental personal values. Furthermore, three groups of executives were identified (good conduct group, low restriction group and high restriction group). The differences observed in the importance of personal values here presented by the dimensions called Civility, Self-Direction and Conformity can lead to different buying behaviors and product preferences. From the results found in this study the companies could adapt their current and new products offers, as well as their communication in order to better serve these segments of executives from Sao Paulo.
Targeted! Population segmentation, electronic surveillance and governing the unemployed in Australia
Resumo:
Targeting is increasingly used to manage people. It operates by segmenting populations and providing different levels of opportunities and services to these groups. Each group is subject to different levels of surveillance and scrutiny. This article examines the deployment of targeting in Australian social security. Three case studies of targeting are presented in Australia's management of benefit overpayment and fraud, the distribution of employment services and the application of workfare. In conceptualizing surveillance as governance, the analysis examines the rationalities, technologies and practices that make targeting thinkable, practicable and achievable. In the case studies, targeting is variously conceptualized and justified by calculative risk discourses, moral discourses of obligation and notions of welfare dependency Advanced information technologies are also seen as particularly important in giving rise to the capacity to think about and act on population segments.
Resumo:
Objective: The aim of this article is to propose an integrated framework for extracting and describing patterns of disorders from medical images using a combination of linear discriminant analysis and active contour models. Methods: A multivariate statistical methodology was first used to identify the most discriminating hyperplane separating two groups of images (from healthy controls and patients with schizophrenia) contained in the input data. After this, the present work makes explicit the differences found by the multivariate statistical method by subtracting the discriminant models of controls and patients, weighted by the pooled variance between the two groups. A variational level-set technique was used to segment clusters of these differences. We obtain a label of each anatomical change using the Talairach atlas. Results: In this work all the data was analysed simultaneously rather than assuming a priori regions of interest. As a consequence of this, by using active contour models, we were able to obtain regions of interest that were emergent from the data. The results were evaluated using, as gold standard, well-known facts about the neuroanatomical changes related to schizophrenia. Most of the items in the gold standard was covered in our result set. Conclusions: We argue that such investigation provides a suitable framework for characterising the high complexity of magnetic resonance images in schizophrenia as the results obtained indicate a high sensitivity rate with respect to the gold standard. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Lateral ventricular volumes based on segmented brain MR images can be significantly underestimated if partial volume effects are not considered. This is because a group of voxels in the neighborhood of lateral ventricles is often mis-classified as gray matter voxels due to partial volume effects. This group of voxels is actually a mixture of ventricular cerebro-spinal fluid and the white matter and therefore, a portion of it should be included as part of the lateral ventricular structure. In this note, we describe an automated method for the measurement of lateral ventricular volumes on segmented brain MR images. Image segmentation was carried in combination of intensity correction and thresholding. The method is featured with a procedure for addressing mis-classified voxels in the surrounding of lateral ventricles. A detailed analysis showed that lateral ventricular volumes could be underestimated by 10 to 30% depending upon the size of the lateral ventricular structure, if mis-classified voxels were not included. Validation of the method was done through comparison with the averaged manually traced volumes. Finally, the merit of the method is demonstrated in the evaluation of the rate of lateral ventricular enlargement. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Given the importance of syllables in the development of reading, spelling, and phonological awareness, information is needed about how children syllabify spoken words. To what extent is syllabification affected by knowledge of spelling, to what extent by phonology, and which phonological factors are influential? In Experiment 1, six- and seven-year-old children did not show effects of spelling on oral syllabification, performing similarly on words such as habit and rabbit. Spelling influenced the syllabification of older children and adults, with the results suggesting that knowledge of spelling must be well entrenched before it begins to affect oral syllabification. Experiment 2 revealed influences of phonological factors on syllabification that were similar across age groups. Young children, like older children and adults, showed differences between words with short and long vowels (e.g., lemon vs. demon) and words with sonorant and obstruent intervocalic consonants (e.g., melon vs. wagon). (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention
Resumo:
Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.
Resumo:
While fluoroscopy is still the most widely used imaging modality to guide cardiac interventions, the fusion of pre-operative Magnetic Resonance Imaging (MRI) with real-time intra-operative ultrasound (US) is rapidly gaining clinical acceptance as a viable, radiation-free alternative. In order to improve the detection of the left ventricular (LV) surface in 4D ultrasound, we propose to take advantage of the pre-operative MRI scans to extract a realistic geometrical model representing the patients cardiac anatomy. This could serve as prior information in the interventional setting, allowing to increase the accuracy of the anatomy extraction step in US data. We have made use of a real-time 3D segmentation framework used in the recent past to solve the LV segmentation problem in MR and US data independently and we take advantage of this common link to introduce the prior information as a soft penalty term in the ultrasound segmentation algorithm. We tested the proposed algorithm in a clinical dataset of 38 patients undergoing both MR and US scans. The introduction of the personalized shape prior improves the accuracy and robustness of the LV segmentation, as supported by the error reduction when compared to core lab manual segmentation of the same US sequences.
Resumo:
One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69±0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.