998 resultados para seed proteomics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

籽粒的灌浆是将光合器官合成的有机物贮存在籽粒中的过程。这一过程直接决定了籽粒的产量及品质。先前研究表明灌浆籽粒中贮存物质的累积是各种代谢活动和细胞学过程协同作用的结果,但灌浆的分子机制目前还不是非常清楚。水稻是研究籽粒灌浆的优良模式材料,不仅因为它是世界上最重要的淀粉食物来源,更重要的是其全基因组的测序完成为分子机制的研究带来极大的便利。我们对发育水稻籽粒的观察表明在开花后6 天,籽粒就已完成了胚的分化和胚乳的细胞化;此后籽粒经历了一个显著的细胞增大过程,并在开花后12 天左右达到成熟籽粒的大小;而籽粒的灌浆过程起始于开花后6 天,这个过程一直持续到开花后20 天。因此,我们将开花后6 天到20 天的籽粒分为8 个连续的发育阶段进行动态的蛋白质组分析,396个蛋白点的表达在灌浆过程中发生了两倍以上变化。质谱鉴定得到的345 个差异表达的蛋白划分为10 个不同的功能类别。其中新陈代谢类(45%)和蛋白合成/终点(destination)类(20%)两个功能类别中就包括了大多数的差异表达蛋白,预示着这两类蛋白在籽粒发育中的重要性。蛋白功能群的表达分析显示与淀粉合成和乙醇发酵相关的蛋白在发育过程中大幅度的上调,而与碳代谢中心过程(糖酵解和三羧酸循环)相关蛋白呈现明显的下调趋势。大多数的功能类或(亚类)也呈现出下调的表达趋势,如细胞生长/分裂类,蛋白合成类,水解类,信号传导类和转录类。蛋白表达分析的结果表明蛋白的表达随籽粒的发育发生了显著的变化,这些变化与籽粒在不同阶段的发育和代谢过程密切相关并协调一致,是细胞从生长分裂过渡到以淀粉合成为中心的物质基础。同时也说明代谢重点由中心碳代谢向乙醇发酵的转变对于籽粒的发育和淀粉的合成与累积具有重要意义。 籽粒发育的研究表明在长到成熟籽粒大小后(开花后12 天),籽粒的代谢集中到淀粉累积途径上,一直持续到进入脱水期(18 天),绝大多数淀粉合成相关蛋白在这期间到达表达的顶点。为了解淀粉累积关键时期淀粉合成关键部位(胚乳)的发育规律,我们进一步应用DIGE 技术对这一淀粉累积关键时期(灌浆中后期,开花后12 到18 天)的蛋白表达特性进行分析。细胞学的观察发现胚乳在灌浆后期先后经历了过氧化氢的爆发、半透明胚乳的形成以及胚乳细胞死亡事件。相应的DIGE 分析显示有321 个蛋白点在胚乳的后期发育中发生了显著的表达变化。细胞学的观察结合DIGE 分析显示胚乳的后期发育是一个典型的衰老过程:细胞结构的崩溃;氧化自由基的爆发;脱水干燥;蛋白、脂类和DNA 由同化作用向异化作用的代谢转化。与代谢转化相伴随的细胞营养的重新分配是胚乳后期发育的一个显著过程。DIGE分析全面展示了参与营养重新分配相关蛋白在后期发育中的表达变化,为细胞学中观察到的有机物向淀粉的转化提供了清晰的蛋白水平的证据支持。在鉴定的差异表达蛋白中有2/3 的蛋白是已知的对氧化电位变化敏感的蛋白,表明由H2O2 爆发形成的氧化压力将引起氧化还原调控从而对胚乳的后期发育进行全面的影响。而其中与碳元素代谢相关的代谢途径中尤其富含氧化还原电位敏感的蛋白,表明后期的营养重新分配以及淀粉的累积受到氧化还原电位的紧密调控。另一方面,H2O2 的爆发激发了胚乳中的抗氧化体系。由抗氧化蛋白(如thioredoxin、抗坏血酸和超氧化物歧化酶等)、氧化还原敏感蛋白、代谢中间产物以及glyoxalase 构成的抗氧化体系在胚乳后期发育中协同作用调节氧化还原电位的变化,从而控制胚乳细胞衰老的节奏。另外,我们发现与RraA 相关的转录本的调控在胚乳发育末期急剧上调,在调控的代谢途径、调控时间以及调控的部位与氧化还原调控相重叠,并且支持RraA 活动有利于胚乳细胞对氧化压力的适应。所有这些结果表明内生的过氧化氢(或氧化自由基)在胚乳的后期发育和淀粉累积中起到核心的调控作用。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of action and properties of a solid-phase ligand library made of hexapeptides (combinatorial peptide ligand libraries or CPLL), for capturing the "hidden proteome", i.e. the low- and very low-abundance proteins constituting the vast majority of species in any proteome, as applied to plant tissues, are reviewed here. Plant tissues are notoriously recalcitrant to protein extraction and to proteome analysis. Firstly, rigid plant cell walls need to be mechanically disrupted to release the cell content and, in addition to their poor protein yield, plant tissues are rich in proteases and oxidative enzymes, contain phenolic compounds, starches, oils, pigments and secondary metabolites that massively contaminate protein extracts. In addition, complex matrices of polysaccharides, including large amount of anionic pectins, are present. All these species compete with the binding of proteins to the CPLL beads, impeding proper capture and identification / detection of low-abundance species. When properly pre-treated, plant tissue extracts are amenable to capture by the CPLL beads revealing thus many new species among them low-abundance proteins. Examples are given on the treatment of leaf proteins, of corn seed extracts and of exudate proteins (latex from Hevea brasiliensis). In all cases, the detection of unique gene products via CPLL capture is at least twice that of control, untreated sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of action and properties of a solid-phase ligand library made of hexapeptides (combinatorial peptide ligand libraries or CPLL, for capturing the "hidden proteome", i.e. the low- and very low-abundance proteins Constituting the vast majority of species in any proteome. as applied to plant tissues, are reviewed here. Plant tissues are notoriously recalcitrant to protein extraction and to proteome analysis, Firstly, rigid plant cell walls need to be mechanically disrupted to release the cell content and, in addition to their poor protein yield, plant tissues are rich in proteases and oxidative enzymes, contain phenolic Compounds, starches, oils, pigments and secondary metabolites that massively contaminate protein extracts. In addition, complex matrices of polysaccharides, including large amount of anionic pectins, are present. All these species compete with the binding of proteins to the CPLL beads, impeding proper capture and identification I detection of low-abundance species. When properly pre-treated, plant tissue extracts are amenable to capture by the CPLL beads revealing thus many new species among them low-abundance proteins. Examples are given on the treatment of leaf proteins, of corn seed extracts and of exudate proteins (latex from Hevea brasiliensis). In all cases, the detection of unique gene products via CPLL Capture is at least twice that of control, untreated sample. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dr. Young-Ki Paik directs the Yonsei Proteome Research Center in Seoul, Korea and was elected as the President of the Human Proteome Organization (HUPO) in 2009. In the December 2009 issue of the Current Pharmacogenomics and Personalized Medicine (CPPM), Dr. Paik explains the new field of pharmacoproteomics and the approaching wave of “proteomics diagnostics” in relation to personalized medicine, HUPO’s role in advancing proteomics technology applications, the HUPO Proteomics Standards Initiative, and the future impact of proteomics on medicine, science, and society. Additionally, he comments that (1) there is a need for launching a Gene-Centric Human Proteome Project (GCHPP) through which all representative proteins encoded by the genes can be identified and quantified in a specific cell and tissue and, (2) that the innovation frameworks within the diagnostics industry hitherto borrowed from the genetics age may require reevaluation in the case of proteomics, in order to facilitate the uptake of pharmacoproteomics innovations. He stresses the importance of biological/clinical plausibility driving the evolution of biotechnologies such as proteomics,instead of an isolated singular focus on the technology per se. Dr. Paik earned his Ph.D. in biochemistry from the University of Missouri-Columbia and carried out postdoctoral work at the Gladstone Foundation Laboratories of Cardiovascular Disease, University of California at San Francisco. In 2005, his research team at Yonsei University first identified and characterized the chemical structure of C. elegans dauer pheromone (daumone) which controls the aging process of this nematode. He is interviewed by a multidisciplinary team specializing in knowledge translation, technology regulation, health systems governance, and innovation analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the Australian wet tropics bioregion, only 900 000 hectares of once continuous rainforest habitat between Townsville and Cooktown now remains. While on the Atherton Tableland, only 4% of the rainforest that once occurred there remains today with remnant vegetation now forming a matrix of rainforest dispersed within agricultural land (sugarcane, banana, orchard crops, townships and pastoral land). Some biologists have suggested that remnants often support both faunal and floral communities that differ significantly from remaining continuous forest. Australian tropical forests possess a relatively high diversity of native small mammal species particularly rodents, which unlike larger mammalian and avian frugivores elsewhere, have been shown to be resilient to the effects of fragmentation, patch isolation and reduction in patch size. While small mammals often become the dominant mammalian frugivores, in terms of their relative abundance, the relationship that exists between habitat diversity and structure, and the impacts of small mammal foraging within fragmented habitat patches in Australia, is still poorly understood. The relationship between foraging behaviour and demography of two small mammal species, Rattus fuscipes and Melomys cervinipes, and food resources in fragmented rainforest sites, were investigated in the current study. Population densities of both species were strongly related with overall density of seed resources in all rainforest fragments. The distribution of both mammal species however, was found to be independent of the distribution of seed resources. Seed utilisation trials indicated that M.cervinipes and R.fuscipes had less impact on seed resources (extent of seed harvesting) than did other rainforest frugivores. Experimental feeding trials demonstrated that in 85% of fruit species tested, rodent feeding increased seed germination by a factor of 3.5 suggesting that in Australian tropical rainforest remnants, small mammals may play a significant role in enhancing germination of large seeded fruits. This study has emphasised the role of small mammals in tropical rainforest systems in north eastern Australia, in particular, the role that they play within isolated forest fragments where larger frugivorous species may be absent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Seed-transmissibility of brood bean stain virus (BBSV) was investigated in a number of wild legume species. Genninating axes of seeds coliected from BBSV -infected plants were tested by the enzyme-linked immunosorbent assay (ELISA). The virus was found to be seedtransmitted in Vida pal«stina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent theoretical research has shown that ocean currents and wind interact to disperse seeds over long distances among isolated landmasses. Dispersal of seeds among isolated oceanic islands, by birds, oceans and man, is a well-known phenomenon, and many widespread island plants have traits that facilitate this process. Crucially, however, there have been no mechanistic vector-based models of long-distance dispersal for seeds among isolated oceanic islands based on empirical data. Here, we propose a plan to develop seed analogues, or pseudoseeds, fitted with wireless sensor technology that will enable high-fidelity tracking as they disperse across the ocean. The pseudoseeds will be precisely designed to mimic actual seed buoyancy and morphology enabling realistic and accurate, vector-based dispersal models of ocean seed dispersal over vast geographic scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At St Thomas' Hospital, we have developed a computer program on a Titan graphics supercomputer to plan the stereotactic implantation of iodine-125 seeds for the palliative treatment of recurrent malignant gliomas. Use of the Gill-Thomas-Cosman relocatable frame allows planning and surgery to be carried out at different hospitals on different days. Stereotactic computed tomography (CT) and positron emission tomography (PET) scans are performed and the images transferred to the planning computer. The head, tumour and frame fiducials are outlined on the relevant images, and a three-dimensional model generated. Structures which could interfere with the surgery or radiotherapy, such as major vessels, shunt tubing etc., can also be outlined and included in the display. Catheter target and entry points are set using a three-dimensional cursor controlled by a set of dials attached to the computer. The program calculates and displays the radiation dose distribution within the target volume for various catheter and seed arrangements. The CT co-ordinates of the fiducial rods are used to convert catheter co-ordinates from CT space to frame space and to calculate the catheter insertion angles and depths. The surgically implanted catheters are after-loaded the next day and the seeds left in place for between 4 and 6 days, giving a nominal dose of 50 Gy to the edge of the target volume. 25 patients have been treated so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are undifferentiated, multi-potent stem cells with the ability to renew. They can differentiate into many types of terminal cells, such as osteoblasts, chondrocytes, adipocytes, myocytes, and neurons. These cells have been applied in tissue engineering as the main cell type to regenerate new tissues. However, a number of issues remain concerning the use of MSCs, such as cell surface markers, the determining factors responsible for their differentiation to terminal cells, and the mechanisms whereby growth factors stimulate MSCs. In this chapter, we will discuss how proteomic techniques have contributed to our current knowledge and how they can be used to address issues currently facing MSC research. The application of proteomics has led to the identification of a special pattern of cell surface protein expression of MSCs. The technique has also contributed to the study of a regulatory network of MSC differentiation to terminal differentiated cells, including osteocytes, chondrocytes, adipocytes, neurons, cardiomyocytes, hepatocytes, and pancreatic islet cells. It has also helped elucidate mechanisms for growth factor–stimulated differentiation of MSCs. Proteomics can, however, not reveal the accurate role of a special pathway and must therefore be combined with other approaches for this purpose. A new generation of proteomic techniques have recently been developed, which will enable a more comprehensive study of MSCs. Keywords

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The renovation of biomass waste in the form of date seed waste into activated carbon and biofuel by fixed bed pyrolysis reactor has been focused in this study to obtain gaseous, liquid, and solid products. The date seed in particle form is pyrolysed in an externally heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 400◦C to 600◦C. A maximum liquid yield of 50wt.% and char of 30wt.% are obtained at a reactor bed temperature of 500◦C with a running time of 120 minutes. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived. Decolonization of 85–97% is recorded for the textile effluent and 75–90% for the tannery effluent, in all cases decreasing with temperature increase. Good adsorption capacity of the prepared activated carbon in case of diluted textile and tannery effluent was found.