976 resultados para seed limitation
Resumo:
With seeds collected monthly during one year from 53 1-m(2) seed traps, we investigated the seed rain and seed limitation in a gallery forest planted in 1994 in SE Brazil. Contrasting animal- (zoochorous) and wind-dispersed (anemochorous) plants we investigated (1) which aspects of the composition and structure of the vegetation influence the abundance and species richness of the seed rain; (2) if such influences differ between zoochorous and anemochorous seeds; (3) if the abundance and richness of the seed rain sampled under zoochorous and nonzoochorous plant species differ; and (4) if seed limitation (given by the proportion of sites to which seeds were not dispersed) differs between zoochorous and anemochorous plant species, and also between species that have been planted and those that further colonized the area (colonists). Seed rain was intense and dominated by anemochorous species. The overall seed rain was not influenced by the vegetation parameters we analyzed (canopy height and cover, plant size, abundance, and richness) or by the plant species above the seed trap. The abundance and richness of zoochorous seeds in a given spot was influenced by the abundance and richness of zoochorous plants in its immediate vicinity. Seed limitation was higher for anemochorous than zoochorous species and higher for planted than for colonist species. We concluded with recommendations for the initial establishment of a planted forest, including the homogeneous distribution of zoochorous plants to permit a spatially homogeneous zoochorous seedfall, which will likely enhance the chances of survival and successful establishment of seeds.
Resumo:
Bamboos often negatively affect tree recruitment, survival, and growth, leading to arrested tree regeneration in forested habitats. Studies so far have focused on the effects of bamboos on the performance of seedlings and saplings, but the influence of bamboos on forest dynamics may start very early in the forest regeneration process by altering seed rain patterns. We tested the prediction that the density and composition of the seed rain are altered and seed limitation is higher in stands of Guadua tagoara (B or bamboo stands), a large-sized woody bamboo native from the Brazilian Atlantic Forest, compared to forest patches without bamboos (NB or non-bamboo stands). Forty 1 m(2) seed traps were set in B and NB stands, and the seed rain was monitored monthly for 1 year. The seed rain was not greatly altered by the presence of bamboos: rarefied seed species richness was higher for B stands, patterns of dominance and density of seeds were similar between stands, and differences in overall composition were slight. Seed limitation, however, was greater at B stands, likely as a resulted of reduced tree density. Despite Such reduced density, the presence of trees growing amidst and over the bamboos seems to play a key role in keeping the seeds falling in B stands because they serve as food sources for frugivores or simply as perches for them. The loss of such trees may lead to enhanced seed limitation, contributing ultimately to the self-perpetuating bamboo disturbance cycle. (C) 2008 Elsevier B,V. All rights reserved.
Resumo:
So far, seed limitation as a local process, and dispersal limitation as a regional process have been largely neglected in biodiversity-ecosystem functioning research. However, these processes can influence both local plant species diversity and ecosystem processes, such as biomass production. We added seeds of 60 species from the regional species pool to grassland communities at 20 montane grassland sites in Germany. In these sites, plant species diversity ranged from 10 to 34 species m(-2) and, before manipulation, diversity was not related to aboveground biomass, which ranged from 108 to 687 g m(-2). One year after seed addition, local plant species richness had increased on average by six species m(-2) (29%) compared with control plots, and this increase was highest in grasslands with intermediate productivity. The increased diversity after adding seeds was associated with an average increase of aboveground biomass of 36 g m(-2) (14.8%) compared with control plots. Thus, our results demonstrate that a positive relationship between changes in species richness and productivity, as previously reported from experimental plant communities, also holds for natural grassland ecosystems. Our results show that local plant communities are dispersal limited and a hump-shaped model appears to be the limiting outline of the natural diversity-productivity relationship. Hence, the effects of dispersal on local diversity can substantially affect the functioning of natural ecosystems.
Resumo:
Species coexistence and local-scale species richness are limited by the availability of seeds and microsites for germination and establishment. We conducted a seed addition experiment in seminatural grassland at three sites in southern Switzerland and repeated the experiment in two successive years to evaluate various circumstances under which seed limitation and establishment success affect community functioning. A collection of 144000 seeds of 22 meadow species including grasses and forbs of local provenance was gathered, and seeds were individually sown in a density that resembled natural seed rain. The three communities were seed limited. Three years after sowing, single species varied in emergence (0–50%), survival (0–69%), and establishment rates (0–27%). One annual and 13 perennial species reached reproductive stage. Low establishment at one site and reduced growth at another site indicated stronger microsite limitation compared to the third site. Recruitment was influenced by differences in abiotic environmental conditions between sites (water availability, soil minerals) and by within-site differences in biotic interaction (competition). At the least water-limited site, sowing resulted in an increase in phytomass due to establishment of short-lived perennials in the second and third years after sowing. This increase persisted over the following two years due to establishment of longer-lived perennials. After sowing in a wetter year with higher phytomass, however, productivity did not increase, because higher intensity of competition in an early phase of establishment resulted in less vigorous plants later on. Due to the generally favorable weather conditions during this study, sowing year had a small effect on numbers of established individuals over all species. Recruitment limitation can thus constrain local-scale species richness and productivity, either by a lack of seeds or by reduced seedling growth, likely due to competition from the established vegetation.
Resumo:
The role of mutualisms in contributing to species invasions is rarely considered, inhibiting effective risk analysis and management options. Potential ecological consequences of invasion of non-native pollinators include increased pollination and seed set of invasive plants, with subsequent impacts on population growth rates and rates of spread. We outline a quantitative approach for evaluating the impact of a proposed introduction of an invasive pollinator on existing weed population dynamics and demonstrate the use of this approach on a relatively data-rich case study: the impacts on Cytisus scoparius (Scotch broom) from proposed introduction of Bombus terrestris. Three models have been used to assess population growth (matrix model), spread speed (integrodifference equation), and equilibrium occupancy (lattice model) for C. scoparius. We use available demographic data for an Australian population to parameterize two of these models. Increased seed set due to more efficient pollination resulted in a higher population growth rate in the density-independent matrix model, whereas simulations of enhanced pollination scenarios had a negligible effect on equilibrium weed occupancy in the lattice model. This is attributed to strong microsite limitation of recruitment in invasive C. scoparius populations observed in Australia and incorporated in the lattice model. A lack of information regarding secondary ant dispersal of C. scoparius prevents us from parameterizing the integrodifference equation model for Australia, but studies of invasive populations in California suggest that spread speed will also increase with higher seed set. For microsite-limited C. scoparius populations, increased seed set has minimal effects on equilibrium site occupancy. However, for density-independent rapidly invading populations, increased seed set is likely to lead to higher growth rates and spread speeds. The impacts of introduced pollinators on native flora and fauna and the potential for promoting range expansion in pollinator-limited 'sleeper weeds' also remain substantial risks.
Resumo:
Prolonged floral longevity and bumblebees as dominate pollinators in alpine ecosystem have been suggested to overcome pollination limitation of alpine plants arising from the decrease of pollinator activity with increasing altitude. However, this conclusion has never been examined in the Qinghai-Tibetan Plateau (QTP), the highest and largest plateau in the world. In this study, we intended to test year-to-year correlations between floral longevity, visiting frequency and pollen limitation of this species between two populations (at 3200 m and 4000 m) of Gentiana straminea in this plateau. Pollinator exclusion elongated both male and female phases greatly at both sites, and durations of both male and female phases in natural condition varied greatly over three years. The visiting frequency of bumblebees varied greatly at the higher altitude, but seemed to be stable at the lower altitude. Seed production was pollination limited in both populations in most studied years. The floral durations, pollinator frequency and pollination limitation showed no significant and consistent variations with the increase of altitude. The previous hypothesis that the prolonged floral longevity of alpine plants can compensate for low levels of pollinator visitation therefore could not be confirmed, and our results further suggested that in the QTP platform, the altitude shows no consistent effect on the reproductive performance of this species, despite that the fluctuation of visit frequency intensified at the higher altitude.
Resumo:
Although it is always weak between RFID Tag and Terminal in focus of the security, there are no security skills in RFID Tag. Recently there are a lot of studying in order to protect it, but because it has some physical limitation of RFID, that is it should be low electric power and high speed, it is impossible to protect with the skills. At present, the methods of RFID security are using a security server, a security policy and security. One of them the most famous skill is the security module, then they has an authentication skill and an encryption skill. In this paper, we designed and implemented after modification original SEED into 8 Round and 64 bits for Tag.
Resumo:
1. Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2. A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants’ overall reproductive success and long-term survival. Understanding the relationship between plant population size and⁄ or isolation and pollination limitation is of fundamental importance for plant conservation. 3. Weexamined flower visitation and seed set of 10 different plant species fromfive European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4. Wefound evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5. Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.
Resumo:
Questions: How is succession on ex-arable land affected by sowing high and low diversity mixtures of grassland species as compared to natural succession? How long do effects persist? Location: Experimental plots installed in the Czech Republic, The Netherlands, Spain, Sweden and the United Kingdom. Methods: The experiment was established on ex-arable land, with five blocks, each containing three 10 m x 10 m experiment tal plots: natural colonization, a low- (four species) and high-diversity (15 species) seed mixture. Species composition and biomass was followed for eight years. Results: The sown plants considerably affected the whole successional pathway and the effects persisted during the whole eight year period. Whilst the proportion of sown species (characterized by their cover) increased during the study period, the number of sown species started to decrease from the third season onwards. Sowing caused suppression of natural colonizing species, and the sown plots had more biomass. These effects were on average larger in the high diversity mixtures. However, the low diversity replicate sown with the mixture that produced the largest biomass or largest suppression of natural colonizers fell within the range recorded at the five replicates of the high diversity plots. The natural colonization plots usually had the highest total species richness and lowest productivity at the end of the observation period. Conclusions: The effect of sowing demonstrated dispersal limitation as a factor controlling the rate of early secondary succession. Diversity was important primarily for its 'insurance effect': the high diversity mixtures were always able to compensate for the failure of some species.
Resumo:
We examined the effect of the invasive Solanum elaeagnifolium (Solanaceae) on flower visitation patterns and seed set of the co-flowering native Glaucium flavum (Papaveraceae). We observed flowering G. flavum plants in invaded and uninvaded sites and found that G. flavum flowers in uninvaded sites received significantly more total visits. In addition, we hand-pollinated flowers on plants of G. flavum with (i) pure conspecific pollen, (ii) pure S. elaeagnifolium pollen and (iii) three different mixtures of the two types of pollen (containing 25, 50 and 75% invasive pollen). As a control, flowers were left unmanipulated or were permanently bagged. Seed set did not differ significantly between flowers receiving pollen mixtures and pure conspecific pollen. However, in the open pollination treatment, seed set was significantly lower than in the 100% conspecific pollen treatment, which suggests pollen limitation. Bagged flowers had very low seed set. G. flavum was generally resilient against the deposition of S. elaeagnifolium pollen.
Resumo:
Within a community, species may germinate at different times so as to mitigate competition and to take advantage of different aspects of the seasonal environment (temporal niche differentiation). We illustrated a hypothesis of the combined effects of abiotic and biotic competitive factors on germination timing and the subsequent upscale effects on community assembly. We estimated the germination timing (GT) for 476 angiosperm species of the eastern Tibetan Plateau grasslands under two light treatments in the field: high (i.e. natural) light and low light. We also measured the shift in germination timing (SGT) across treatments for all species. Furthermore, we used phylogenetic comparative methods to test if GT and SGT were associated with seed mass, an important factor in competitive interactions. We found a significant positive correlation between GT and seed mass in both light treatments. Additionally, small seeds (early germinating seeds) tended to germinate later and large seeds (late germinating seeds) tended to germinate earlier under low light vs high light conditions. Low light availability can reduce temporal niche differentiation by increasing the overlap in germination time between small and large seeds. In turn, reduced temporal niche differentiation may increase competition in the process of community assembly.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Intensification of land use in semi-natural hay meadows has resulted in a decrease in species diversity. This is often thought to be caused by the reduced establishment of plant species due to high competition for light under conditions of increased productivity. Sowing experiments in grasslands have found reliable evidence that diversity can also be constrained by seed availability, implying that processes influencing the production and persistence of seeds may be important for the functioning of ecosystems. So far, the effects of land-use intensification on the seed rain and the persistence of seeds in the soil have been unclear. We selected six pairs of extensively managed (Festuco-Brometea) and intensively managed (Arrhenatheretalia) grassland with traditional late cutting regimes across Switzerland and covering an annual productivity gradient in the range 176–1211 gm−2. In each grassland community, we estimated seed rain and seed bank using eight pooled seed-trap or topsoil samples of 89 cm2 in each of six plots representing an area of c. 150 m2. The seed traps were established in spring 2010 and collected simultaneously with soil cores after an exposure of c. three months. We applied the emergence method in a cold frame over eight months to estimate density of viable seeds. With community productivity reflecting land-use intensification, the density and species richness in the seed rain increased, while mean seed size diminished and the proportions of persistent seeds and of species with persistent seeds in the topsoil declined. Stronger limitation of seeds in extensively managed semi-natural grasslands can explain the fact that such grasslands are not always richer in species than more intensively managed ones.
Resumo:
Intensification of land use in semi-natural hay meadows has resulted in a decrease in species diversity. This is often thought to be caused by the reduced establishment of plant species due to high competition for light under conditions of increased productivity. Sowing experiments in grasslands have found reliable evidence that diversity can also be constrained by seed availability, implying that processes influencing the production and persistence of seeds may be important for the functioning of ecosystems. So far, the effects of land-use intensification on the seed rain and the persistence of seeds in the soil have been unclear. We selected six pairs of extensively managed (Festuco-Brometea) and intensively managed (Arrhenatheretalia) grassland with traditional late cutting regimes across Switzerland and covering an annual productivity gradient in the range 176-1211 gm(-2). In each grassland community, we estimated seed rain and seed bank using eight pooled seed-trap or topsoil samples of 89 cm(2) in each of six plots representing an area of c. 150 m(2). The seed traps were established in spring 2010 and collected simultaneously with soil cores after an exposure of c. three months. We applied the emergence method in a cold frame over eight months to estimate density of viable seeds. With community productivity reflecting land-use intensification, the density and species richness in the seed rain increased, while mean seed size diminished and the proportions of persistent seeds and of species with persistent seeds in the topsoil declined. Stronger limitation of seeds in extensively managed semi-natural grasslands can explain the fact that such grasslands are not always richer in species than more intensively managed ones. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Dispersal limitation is often involved when the species composition of a dry abandoned grassland shows a slow response to resumed regular mowing. A seed-addition experiment, using 32 species which do not belong to the local species pool, was performed on Monte San Giorgio (southern Switzerland) to test whether the low recruitment success was due to dispersal limitation or due to unfavourable microsite conditions. In October 1997, 20 species were individually sown in six 3 × 4 m blocks of a 2 × 2 factorial “partial” split-plot design with treatments of abandonment vs. mowing and undisturbed vs. root-removed soil, this last being applied in small naturally-degradable pots. Moreover, 12 species were sown only in the treatments on undisturbed soil. Seedlings of sown and spontaneously germinating seeds were observed on 16 occasions over one 12-month period. Seeds of 31 out of the 32 species germinated. Twenty-four species showed germination rates higher than 5% and different seasonal germination patterns. Established vegetation, especially the tussocks ofMolinia arundinacea, reduced the quality of microsites for germination. Whereas a few species germinated better under the litter ofMolinia arundinacea, many more germinated better under the more variable microsite conditions of a mown grassland. Only a few seedlings of 25 species out of the 31 germinated species survived until October 1998. Seedling survival was negatively affected by litter, unfavourable weather conditions (frost and dry periods followed by heavy rains) and herbivory (slugs and grasshoppers). Tussocks ofMolinia arundinacea, however, tended to protect seedlings. The poor establishment success of “new” species observed in abandoned meadows on Monte San Giorgio after resumed mowing is due to dispersal and microsite limitations.