1000 resultados para seed banks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"It could easily provide the back-drop for a James Bond movie. Deep inside a mountain near the North Pole, down a fortified tunnel, and behind airlocked doors in a vault frozen to -18 degrees Celsius, scientists are squirreling away millions of seed samples. The samples constitute the very foundation of agriculture, the biological diversity needed so the world's major food crops can adapt to the next pest or disease, or to climate change. It's little wonder that the Svalbard Global Seed Vault has captured the public's imagination more than almost any agricultural topic in recent years. Popular press reports about the ‘Doomsday Vault,’ however, typically mask the complexity of the endeavor and, if anything, underestimate its practical utility." Cary Fowler This chapter considers the use of seed banks to address concerns about intellectual property, climate change and food security. It has a number of themes. First of all, it is interested in the use of ‘Big Science’ projects to address pressing global scientific concerns and Millennium Development Goals. Second, it highlights the increasing use of banks as a means of managing both property and intellectual property across a wide range of fields of agriculture and biotechnology. Third, it considers the linkage of intellectual property, access to genetic resources and benefit sharing. There are a variety of positions in this debate. Some see requirements in respect of access to genetic resources and benefit sharing as an inconvenient burden for science and commerce. Others defend access to genetic resources and benefit sharing as meaningful and productive. Those inclined to somewhat more conspiratorial views suggest that access to genetic resources and benefit sharing are a ruse to facilitate biopiracy. This chapter has a number of components. Section I focuses upon the Consultative Group on International Agricultural Research (CGIAR) network – often raised as a model for Climate Innovation Centres. Section II considers the Svalbard Global Seed Vault – the so-called Doomsday Vault. After a consideration of the World Summit on Food Security in 2009, it is concluded in this chapter that any future international agreement on climate change needs to address intellectual property, plant genetic resources and food security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seed production and soil seed hanks of H. contortus were studied in a subset of treatments within an extensive grazing study conducted in H. contortus pasture in southern Queensland between 1990 and 1996. Seed production of H. contortus in autumn ranged from 260 to 1800 seeds/m2 with much of this variation due to differences in rainfall between years. Seed production was generally higher in the silver-leaved ironbark than in the narrow-leaved ironbark land class and was also influenced by a consistent stocking rate x pasture type interaction. Inflorescence density was the main factor contributing to the variable seed production and was related to the rainfall received during February. The number of seeds per inflorescence was unaffected by seasonal rainfall, landscape position, stocking rate or legume oversowing. Seed viability was related to the rainfall received during March. Soil seed banks in spring varied from 130 to 520 seeds/m2 between 1990 and 1995 with generally more seed present in the silver-leaved ironbark than in the narrow-leaved ironbark land class. There were poor relationships between viable seed production and the size of the soil seed bank, and between the size of the soil seed bank and seedling recruitment. This study indicates that H. contortus has the potential to produce relatively large amounts of seed and showed that the seasonal pattern of rainfall plays a major role in achieving this potential

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The project will evaluate seed bank depletion of key northern herbicide resistant weeds under different environments, cropping systems, crop agronomies and non-chemical control tactics. The project will also evaluate soil biology and seed bank relationships to explain differences in seed bank persistence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bellyache bush (Jatropha gossypifolia L.) is an invasive shrub that adversely impacts agricultural and natural systems of northern Australia. While several techniques are available to control bellyache bush, depletion of soil seed banks is central to its management. A 10-year study determined the persistence of intact and ant-discarded bellyache bush seeds buried in shade cloth packets at six depths (ranging from 0 to 40 cm) under both natural rainfall and rainfall-excluded conditions. A second study monitored changes in seedling emergence over time, to provide an indication of the natural rate of seed bank depletion at two sites (rocky and heavy clay) following the physical removal of all bellyache bush plants. Persistence of seed in the burial trial varied depending on seed type, rainfall conditions and burial depth. No viable seeds of bellyache bush remained after 72 months irrespective of seed type under natural rainfall conditions. When rainfall was excluded seeds persisted for much longer, with a small portion (0.4%) of ant-discarded seeds still viable after 120 months. Seed persistence was prolonged (> 96 months to decline to < 1% viability) at all burial depths under rainfall-excluded conditions. In contrast, under natural rainfall, surface located seeds took twice as long (70 months) to decline to 1% viability compared with buried seeds (35 months). No seedling emergence was observed after 58 months and 36 months at the rocky and heavy clay soil sites, respectively. These results suggest that the required duration of control programs on bellyache bush may vary due to the effect of biotic and abiotic factors on persistence of soil seed banks.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Estimates of seed bank depletion rates are essential for modelling and management of plant populations. The seed bag burial method is often used to measure seed mortality in the soil. However, the density of seeds within seed bags is higher than densities in natural seed banks, which may elevate levels of pathogens and influence seed mortality. The aim of this study was to quantify the effects of fungi and seed density within buried mesh bags on the mortality of seeds. Striga hermonthica was chosen as the study species because it has been widely studied but different methods for measuring seed mortality in the soil have yielded contradictory estimates. 2. Seed bags were buried in soil and exhumed at regular time intervals to monitor mortality of the seeds in three field experiments during two rainy seasons. The effect of fungal activity on seed mortality was evaluated in a fungi exclusion experiment. Differences in seed-to-seed interaction were obtained by using two and four densities within the seed bags in consecutive years. Densities were created by mixing 1000 seeds with 0, 10, 100 or 1000 g of coarse sand. 3. The mortality rate was significantly lower when fungi were excluded, indicating the possible role of pathogenic fungi. 4. Decreasing the density of seeds in bags significantly reduced seed mortality, most probably because of decreased seed-to-seed contamination by pathogenic fungi. 5. Synthesis and applications. Models of plant populations in general and annual weeds in particular often use values from the literature for seed bank depletion rates. These depletion rates have often been estimated by the seed bag burial method, yet seed density within seed bags may be unrealistically high. Consequently, estimates of seed mortality rates may be too high because of an overestimation of the effects of soil or seed-borne pathogens. Species that have been classified from such studies as having short-lived seed banks may need to be re-assessed using realistic densities either within seed bags or otherwise. Similarly, models of seed bank dynamics based on such overestimated depletion rates may lead to incorrect conclusions regarding the seed banks and, perhaps, the management of weeds and rare species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil seed banks are considered an important mechanism for natural regeneration in tropical forest ecosystems. This paper investigated the soil seed bank in two semideciduous seasonal tropical forest fragments with different disturbance histories in Botucatu, southeastern Brazil. In each study site, 40 superficial soil samples (30 cm × 30 cm × 5 cm) were taken at the end of both the dry and rainy seasons. The seeds were estimated by the germination method. Average soil seed density was 588.6 and 800.3 seeds m-2, respectively, for site 1 (less disturbed) and site 2 (more disturbed). Seed density and diversity (H′) were significantly higher in site 2 in both seasons. Non-woody taxa predominated in both fragments, but pioneer tree species were better represented in the less disturbed forest. Both ecosystems have a potential for regeneration from soil seed banks, but this potential is higher in the less disturbed site. Low richness and density of pioneer tree species in the seed bank indicate that the ecosystem has lost its resilience. The seed bank is not as important in these ecosystems as in other forests. Results indicate that management strategies to restore these forests should take into account the possibility of recovering soil seed bank processes and dynamics. © 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A trial was undertaken to evaluate the effect of microwaves on seed mortality of three weed species. Seeds of rubber vine (Cryptostegia grandiflora R.Br.), parthenium (Parthenium hysterophorous L.) and bellyache bush (Jatropha gossypiifolia L.) were buried at six depths (0, 2.5, 5, 10, 20 and 40 cm) in coarse sand maintained at one of two moisture levels, oven dry or wet (field capacity), and then subjected to one of five microwave radiation durations of (0, 2, 4, 8 and 16 min). Significant interactions between soil moisture level, microwave radiation duration, seed burial depth and species were detected for mortality of seeds of all three species. Maximum seed mortality of rubber vine (88%), parthenium (67%) and bellyache bush (94%) occurred in wet soil irradiated for 16 min. Maximum seed mortality of rubber vine and bellyache bush seeds occurred in seeds buried at 2.5 cm depth whereas that of parthenium occurred in seeds buried at 10 cm depth. Maximum soil temperatures of 114.1 and 87.5°C in dry and wet soil respectively occurred at 2.5 cm depth following 16 min irradiation. Irrespective of the greater soil temperatures recorded in dry soil, irradiating seeds in wet soil generally increased seed mortality 2.9-fold compared with dry soil. Moisture content of wet soil averaged 5.7% compared with 0.1% for dry soil. Results suggest that microwave radiation has the potential to kill seeds located in the soil seed bank. However, many factors, including weed species susceptibility, determine the effectiveness of microwave radiation on buried seeds. Microwave radiation may be an alternative to conventional methods at rapidly depleting soil seed banks in the field, particularly in relatively wet soils that contain long lived weed seeds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Weed management is complicated by the presence of soil seed banks. The complexity of soil-seed interactions means that seed persistence in the field is often difficult to measure, let alone predict. Field trials, although accurate in their context, are time-consuming and expensive to conduct for individual species. Some ex situ techniques for estimating seed life expectancy have been proposed, but these fail to simulate the environmental complexity of the field. Also, it has been questioned whether techniques such as the controlled aging test (CAT) are useful indicators of field persistence. This study aimed to test the validity of the standard CAT (seed aging at 45 C and 60% relative humidity) in use at the Royal Botanic Gardens, Kew, U.K., for predicting field seed-persistence. Comparison of seed persistence and CAT data for 27 northwest European species suggested a significant positive correlation of 0.31. Subsequently, 13 species of emerging and common weeds of Queensland were assessed for their seed longevity using the CAT. The seed longevity data of these species in the CAT were linked with field seed-persistence data according to three broad seed-persistence categories: <1 yr, 1 to 3 yr, and >3 yr. We discuss the scope for using the CAT as a tool for rapid assignment of species to these categories. There is a need for further studies that compare predictions of seed persistence based on the CAT with seed persistence in the field for a larger range of species and environments.