940 resultados para second order statistics
Resumo:
In this paper, novel closed-form expressions for the level crossing rate and average fade duration of κ − μ shadowed fading channels are derived. The new equations provide the capability of modeling the correlation between the time derivative of the shadowed dominant and multipath components of the κ − μ shadowed fading envelope. Verification of the new equations is performed by reduction to a number of known special cases. It is shown that as the shadowing of the resultant dominant component decreases, the signal crosses lower threshold levels at a reduced rate. Furthermore, the impact of increasing correlation between the slope of the shadowed dominant and multipath components similarly acts to reduce crossings at lower signal levels. The new expressions for the second-order statistics are also compared with field measurements obtained for cellular device-to-device and body-centric communication channels, which are known to be susceptible to shadowed fading.
Resumo:
Exact and closed-form expressions for the level crossing rate and average fade duration are presented for equal gain combining and maximal ratio combining schemes, assuming an arbitrary number of independent branches in a Rayleigh environment. The analytical results are thoroughly validated by simulation.
Resumo:
Exact and closed-form expressions for the level crossing rate and average fade duration are presented for the M branch pure selection combining (PSC), equal gain combining (EGC), and maximal ratio combining (MRC) techniques, assuming independent branches in a Nakagami environment. The analytical results are thoroughly validated by reducing the general case to some special cases, for which the solutions are known, and by means of simulation for the more general case. The model developed here is general and can be easily applied to other fading statistics (e.g., Rice).
Resumo:
It is usual to hear a strange short sentence: «Random is better than...». Why is randomness a good solution to a certain engineering problem? There are many possible answers, and all of them are related to the considered topic. In this thesis I will discuss about two crucial topics that take advantage by randomizing some waveforms involved in signals manipulations. In particular, advantages are guaranteed by shaping the second order statistic of antipodal sequences involved in an intermediate signal processing stages. The first topic is in the area of analog-to-digital conversion, and it is named Compressive Sensing (CS). CS is a novel paradigm in signal processing that tries to merge signal acquisition and compression at the same time. Consequently it allows to direct acquire a signal in a compressed form. In this thesis, after an ample description of the CS methodology and its related architectures, I will present a new approach that tries to achieve high compression by design the second order statistics of a set of additional waveforms involved in the signal acquisition/compression stage. The second topic addressed in this thesis is in the area of communication system, in particular I focused the attention on ultra-wideband (UWB) systems. An option to produce and decode UWB signals is direct-sequence spreading with multiple access based on code division (DS-CDMA). Focusing on this methodology, I will address the coexistence of a DS-CDMA system with a narrowband interferer. To do so, I minimize the joint effect of both multiple access (MAI) and narrowband (NBI) interference on a simple matched filter receiver. I will show that, when spreading sequence statistical properties are suitably designed, performance improvements are possible with respect to a system exploiting chaos-based sequences minimizing MAI only.
Resumo:
Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function (CPDF) is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures.
Resumo:
An expression for the probability density function of the second order response of a general FPSO in spreading seas is derived by using the Kac-Siegert approach. Various approximations of the second order force transfer functions are investigated for a ship-shaped FPSO. It is found that, when expressed in non-dimensional form, the probability density function of the response is not particularly sensitive to wave spreading, although the mean squared response and the resulting dimensional extreme values can be sensitive. The analysis is then applied to a Sevan FPSO, which is a large cylindrical buoy-like structure. The second order force transfer functions are derived by using an efficient semi-analytical hydrodynamic approach, and these are then employed to yield the extreme response. However, a significant effect of wave spreading on the statistics for a Sevan FPSO is found even in non-dimensional form. It implies that the exact statistics of a general ship-shaped FPSO may be sensitive to the wave direction, which needs to be verified in future work. It is also pointed out that the Newman's approximation regarding the frequency dependency of force transfer function is acceptable even for the spreading seas. An improvement on the results may be attained when considering the angular dependency exactly. Copyright © 2009 by ASME.
Resumo:
For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.
Resumo:
We seek numerical methods for second‐order stochastic differential equations that reproduce the stationary density accurately for all values of damping. A complete analysis is possible for scalar linear second‐order equations (damped harmonic oscillators with additive noise), where the statistics are Gaussian and can be calculated exactly in the continuous‐time and discrete‐time cases. A matrix equation is given for the stationary variances and correlation for methods using one Gaussian random variable per timestep. The only Runge–Kutta method with a nonsingular tableau matrix that gives the exact steady state density for all values of damping is the implicit midpoint rule. Numerical experiments, comparing the implicit midpoint rule with Heun and leapfrog methods on nonlinear equations with additive or multiplicative noise, produce behavior similar to the linear case.
Resumo:
A cell classification algorithm that uses first, second and third order statistics of pixel intensity distributions over pre-defined regions is implemented and evaluated. A cell image is segmented into 6 regions extending from a boundary layer to an inner circle. First, second and third order statistical features are extracted from histograms of pixel intensities in these regions. Third order statistical features used are one-dimensional bispectral invariants. 108 features were considered as candidates for Adaboost based fusion. The best 10 stage fused classifier was selected for each class and a decision tree constructed for the 6-class problem. The classifier is robust, accurate and fast by design.
Resumo:
2000 Mathematics Subject Classification: 62G32, 62G20.