948 resultados para second order blind source separation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the blind source separation (BSS) problem with the assumption that the source signals are cyclostationary. Identifiability and separability criteria based on second-order cyclostationary statistics (SOCS) alone are derived. The identifiability condition is used to define an appropriate contrast function. An iterative algorithm (ATH2) is derived to minimize this contrast function. This algorithm separates the sources even when they do not have distinct cycle frequencies .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new method for blind source separation by exploiting phase and frequency redundancy of cyclostationary signals in a complementary way. It requires a weaker separation condition than those methods which only exploit the phase diversity or the frequency diversity of the source signals. The separation criterion is to diagonalize a polynomial matrix whose coefficient matrices consist of the correlation and cyclic correlation matrices, at time delay .TAU. = 0, of multiple measurements. An algorithm is proposed to perform the blind source separation. Computer simulation results illustrate the performance of the new algorithm in comparison with the existing ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new time-frequency approach to the underdetermined blind source separation using the parallel factor decomposition of third-order tensors. Without any constraint on the number of active sources at an auto-term time-frequency point, this approach can directly separate the sources as long as the uniqueness condition of parallel factor decomposition is satisfied. Compared with the existing two-stage methods where the mixing matrix should be estimated at first and then used to recover the sources, our approach yields better source separation performance in the presence of noise. Moreover, the mixing matrix can be estimated at the same time of the source separation process. Numerical simulations are presented to show the superior performance of the proposed approach to some of the existing two-stage blind source separation methods that use the time-frequency representation as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with blind equalization of single-input-multiple-output (SIMO) finite-impulse-response (FIR) channels driven by i.i.d. signal, by exploiting the second-order statistics (SOS) of the channel outputs. Usually, SOS-based blind equalization is carried out via two stages. In Stage 1, the SIMO FIR channel is estimated using a blind identification method, such as the recently developed truncated transfer matrix (TTM) method. In Stage 2, an equalizer is derived from the estimate of the channel to recover the source signal. However, this type of two-stage approach does not give satisfactory blind equalization result if the channel is ill-conditioned, which is often encountered in practical applications. In this paper, we first show that the TTM method does not work in some situations. Then, we propose a novel SOS-based blind equalization method which can directly estimate the equalizer without knowing the channel impulse responses. The proposed method can obtain the desired equalizer even in the case that the channel is ill-conditioned. The performance of our method is illustrated by numerical simulations and compared with four benchmark methods. © 2014 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present and test an extension of slow feature analysis as a novel approach to nonlinear blind source separation. The algorithm relies on temporal correlations and iteratively reconstructs a set of statistically independent sources from arbitrary nonlinear instantaneous mixtures. Simulations show that it is able to invert a complicated nonlinear mixture of two audio signals with a high reliability. The algorithm is based on a mathematical analysis of slow feature analysis for the case of input data that are generated from statistically independent sources. © 2014 Henning Sprekeler, Tiziano Zito and Laurenz Wiskott.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, a standard postnonlinear blind source separation algorithm is proposed, based on the MISEP method, which is widely used in linear and nonlinear independent component analysis. To best suit a wide class of postnonlinear mixtures, we adapt the MISEP method to incorporate a priori information of the mixtures. In particular, a group of three-layered perceptrons and a linear network are used as the unmixing system to separate sources in the postnonlinear mixtures, and another group of three-layered perceptron is used as the auxiliary network. The learning algorithm for the unmixing system is then obtained by maximizing the output entropy of the auxiliary network. The proposed method is applied to postnonlinear blind source separation of both simulation signals and real speech signals, and the experimental results demonstrate its effectiveness and efficiency in comparison with existing methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I and Q Channel phase and gain mismatches are of great concern in communications receiver design. In this paper we carry out a detailed performance analysis of the Blind-Source Seperation (BSS) based imbalance compensation structure. The results indicate that the BSS structure can offer adequate performance for most communication systems. Since the compensation is carried out before any modulation specific processing, the proposed compensation method works with all standard modulation formats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we carry out a detailed performance analysis of a novel blind-source-seperation (BSS) based DSP algorithm that tackles the carrier phase synchronization error problem. The results indicate that the mismatch can be effectively compensated during the normal operation as well as in the rapidly changing environments. Since the compensation is carried out before any modulation specific processing, the proposed method works with all standard modulation formats and lends itself to efficient real-time custom integrated hardware or software implementations.