970 resultados para seasonal growth
Resumo:
Waterhyacinth ( Eichhornia crassipes (Mart.) Solms), is a serious problem in the Sacramento/San Joaquin Delta, California. There is little published information on its phenology or seasonal growth in this system. Waterhyacinths were sampled at 2 to 3 week intervals from November, 1995 to July, 1997 and the following measurements were made on individual plants: dry weight, height, number of living leaves, number of dead leaves, and the width of the largest lamina. (PDF has 4 pages.)
Resumo:
Research into the production ecology of chalk streams using a large artificial recirculating stream is described. Physical chemical processes including calcium and inorganic phosphate levels, and exchange of gaseous carbon dioxide in both a simple closed system and a circulating system with gravel substrate have been monitored in both light and dark conditions. Further experiments were concerned with the seasonal changes in algal growth over the gravel substrate with constant water velocities and replenishment. The algal population, composed mainly of the diatoms Achnanthes minutissima, Meridion circulare, Nitzschia fonticola and Synedra ulna reached a peak in mid May and declined rapidly during June. Concentrations of phosphate phosphorus fell as the diatoms grew but was not thought to limit growth. Silicate concentrations followed the diatom cycle closely but never fell below 0.8 mg/l Si. It is possible that one of the nutrients may have been limiting the rate of growth due to steep diffusion gradients through the algal mat. In the last summer and autumn a hard calcareous crust composed of the green alga Gongrosira incrustans and the blue green alga Homeothrix varians , developed. The channel stream is compared with the natural conditions found in chalk streams.
A simple spreadsheet model to incorporate seasonal growth into length-based stock assessment methods
Resumo:
The paper describes a method by which seasonal growth can be incorporated into length-converted catch curves and cohort analyses using a spreadsheet. The method is based on calculating the length of fish using seasonal growth parameters on a daily basis. A LOOKUP function is then used to find the age corresponding to the length.
Resumo:
Samples of 11,000 King George whiting (Sillaginodes punctata) from the South Australian commercial and recreational catch, supplemented by research samples, were aged from otoliths. Samples were analyzed from three coastal regions and by sex. Most sampling was undertaken at fish processing plants, from which only fish longer than the legal minimum length were obtained. A left-truncated normal distribution of lengths at monthly age was therefore employed as model likelihood. Mean length-at-monthly-age was described by a generalized von Bertalanffy formula with sinusoidal seasonality. Likelihood standard deviation was modeled to vary allometrically with mean length. A range of related formulas (with 6 to 8 parameters) for seasonal mean length at age were compared. In addition to likelihood ratio tests of relative fit, model selection criteria were a minimum occurrence of high uncertainties (>20% SE), of high correlations (>0.9, >0.95, and >0.99) and of parameter estimates at their biological limits, and we sought a model with a minimum number of parameters. A generalized von Bertalanffy formula with t0 fixed at 0 was chosen. The truncated likelihood alleviated the overestimation bias of mean length at age that would otherwise accrue from catch samples being restricted to legal sizes.
Resumo:
An analysis of growth of scad and mackerels on Sofala Bank, Mozambique, was performed using data collected from commercial vessels during the year 1986-87, using the "Compleat Elefan" software package. Updated estimates of growth parameters of Decapterus russelli, D. macrosoma (Carangidae), and Rastrelliger kanagurta (Scombridae) were obtained which take seasonal growth oscillations into account. Preliminary growth parameter estimates are also presented for Selar crumenophthalmus (Carangidae) and Saurida undosquamis (Synodontidae).
Resumo:
The application of oxygen isotope ratios ({delta}18O) from freshwater bivalves as a proxy for river discharge conditions in the Rhine and Meuse rivers is investigated. We compared a dataset of water temperature and water {delta}18O values with a selection of recent shell {delta}18O records for two species of the genus Unio in order to establish: (1) whether differences between the rivers in water {delta}18O values, reflecting river discharge conditions, are recorded in unionid shells; and (2) to what extent ecological parameters influence the accuracy of bivalve shell {delta}18O values as proxies of seasonal, water oxygen isotope conditions in these rivers. The results show that shells from the two rivers differ significantly in {delta}18O values, reflecting different source waters for these two rivers. The seasonal shell {delta}18O records show truncated sinusoidal patterns with narrow peaks and wide troughs, caused by temperature fractionation and winter growth cessation. Interannual growth rate reconstructions show an ontogenetic growth rate decrease. Growth lines in the shell often, but not always, coincide with winter growth cessations in the {delta}18O record, suggesting that growth cessations in the shell {delta}18O records are a better age estimator than counting internal growth lines. Seasonal predicted and measured {delta}18O values correspond well, supporting the hypothesis that these unionids precipitate their shells in oxygen isotopic equilibrium. This means that (sub-) fossil unionids can be used to reconstruct spring-summer river discharge conditions, such as Meuse low-discharge events caused by droughts and Rhine meltwater-influx events caused by melting of snow in the Alps.
Resumo:
Toward the ultimate goal of replacing field-based evaluation of seasonal growth habit, we describe the design and validation of a multiplex polymerase chain reaction assay diagnostic for allelic status at the barley (Hordeum vulgare ssp. vulgare L.) vernalization locus, VRN-H1 By assaying for the presence of all known insertion–deletion polymorphisms thought to be responsible for the difference between spring and winter alleles, this assay directly tests for the presence of functional polymorphism at VRN-H1 Four of the nine previously recognized VRN-H1 haplotypes (including both winter alleles) give unique profiles using this assay. The remaining five spring haplotypes share a single profile, indicative of function-altering deletions spanning, or adjacent to, the putative “vernalization critical” region of intron 1. When used in conjunction with a previously published PCR-based assay diagnostic for alleles at VRN-H2, it was possible to predict growth habit in all the 100 contemporary UK spring and winter lines analyzed in this study. This assay is likely to find application in instances when seasonal growth habit needs to be determined without the time and cost of phenotypic assessment and during marker-assisted selection using conventional and multicross population analysis.
Resumo:
Barley can be classified into three major agronomic types, based on its seasonal growth habit (SGH): spring, winter and alternative. Winter varieties require exposure to vernalization to promote subsequent flowering and are autumn-sown. Spring varieties proceed to flowering in the absence of vernalization and are sown in the spring. The ‘alternative’ (also known as ‘facultative’) SGH is only loosely defined and can be sown in autumn or spring. Here, we investigate the molecular genetic basis of alternative barley. Analysis of the major barley vernalization (VRN-H1, VRN-H2) and photoperiod (PPD-H1, PPD-H2) response genes in a collection of 386 varieties found alternative SGH to be characterized by specific allelic combinations. Spring varieties possessed spring loci at one or both of the vernalization response loci, combined with long-day non-responsive ppd-H1 alleles and wild-type alleles at the short-day photoperiod response locus, PPD-H2. Winter varieties possessed winter alleles at both vernalization loci, in combination with the mutant ppd-H2 allele conferring delayed flowering under short-day photoperiods. In contrast, all alternative varieties investigated possessed a single spring allele (either at VRN-H1 or at VRN-H2) combined with mutant ppd-H2 alleles. This allelic combination is found only in alternative types and is diagnostic for alternative SGH in the collection studied. Analysis of flowering time under controlled environment found alternative varieties flowered later than spring control lines, with the difference most pronounced under short-day photoperiods. This work provides genetic characterization of the alternative SGH phenotype, allowing precise manipulation of SGH and flowering time within breeding programmes, and provides the molecular tools for classification of all three SGH categories within national variety registration processes.
Resumo:
Seasonal growth was studied in the slow-growing crustose lichen Rhizocarpon geographicum (L.) DC. in an area of South Gwynedd, Wales. Radial growth rate (RGR) of a sample of 20 thalli was measured in situ at three-month intervals over 51 months on a southeast-facing rock surface. There were five periods of significant growth: July-September of 1993, 1994 and 1995, in January-March of 1996, and in April-June of 1997. In four of these periods, growth coincided with a mean temperature maximum (Tmax) over a three-month period exceeding 15°C and three of the maxima with greater than 450 sunshine hours. Two of the growth maxima coincided with periods of total rainfall exceeding 300 mm and one with greater than 50 rain days in a three-month period. There were no significant linear correlations between RGR and the climatic variables measured. However, there were significant non-linear relationships between RGR and Tmax, the mean temperature minimum (Tmin), the total number of air and ground frosts and the number of rain days in a growth period, the relationship with Tmax being the most significant. Hence, in south Gwynedd, maximum growth of R. geographicum occurs in any season although the period July-September appears to be the most favourable. Relationships between growth and climatic variables were non-linear, temperature having the most significant influence on seasonal growth. ©2006 Balaban.
Resumo:
The pattern of seasonal growth and the relation of growth rate to colony size were studied in four foliose and two crustose species of saxicolous lichens. A new method of measuring growth was used whereby the advance of a sample of lobes along millimetres marked on the substrate was measured under a magnification of x10. Three peaks of growth were found(in March, June and November) for the foliose species and a single peak (in May to August) for the crustose species. THe peaks of growth corresponded approximately to peaks of rainfall. Growth rate in relation to increasing colony size fell in a smooth exponential curve when expressed on a cm squared/ cm squared/ unit time basis. The result is consistent with a linear radial rate for most of the thallus sizes for the six species. There is also evidence for an exponential incresae in growth rate initially until about 1.5 cm thallus diameter in two of the sepcies when the linear radial rate is achieved.
Resumo:
The aim of this study was to test the hypothesis that differences in the pattern of seasonal growth in foliose lichens from year to year were determined by yearly differences in the distribution of rainfall, shortwave radiation and temperature. Hence, the radial growth of Parmelia conspersa (Ehrh. Ex Ach.) Ach. , P. glabratula ssp. fuliginosa (Fr. ex Duby) Laund. and Physcia orbicularis (Neck) Poetsch. was studied on slate fragments over 34 successive months in an area of South Gwynedd, Wales. U.K. Similarities and differences were observed in the pattern of seasonal growth in the three species. Periods of maximum growth of a species occurred in different seasons in successive years. Correlation and multiple regression analysis suggested that total rainfall per month was the most important climatic variable positively correlated with monthly growth. Significant positive correlations were found in some growth periods with number of raindays per month, average wind speed and maximum and minimum temperature. Total number of sunshine hours per month and the frequency of ground frosts were negatively correlated with monthly growth in some growth periods. For each species, monthly radial growth was correlated with different climatic variables in each growth period. Hence, the results support the hypothesis in that periods of maximum growth can occur in any season in South Gwynedd and depend on (1) the distribution of periods of high total rainfall and (2) whether or not these periods coincide with periods of maximum sunlight.
Resumo:
Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each g rowth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2 smolts was significantly higher than age-1. smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10−18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean reg ime shift. During 1977−2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955−1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977−2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.
Resumo:
This paper presents a maximum likelihood method for estimating growth parameters for an aquatic species that incorporates growth covariates, and takes into consideration multiple tag-recapture data. Individual variability in asymptotic length, age-at-tagging, and measurement error are also considered in the model structure. Using distribution theory, the log-likelihood function is derived under a generalised framework for the von Bertalanffy and Gompertz growth models. Due to the generality of the derivation, covariate effects can be included for both models with seasonality and tagging effects investigated. Method robustness is established via comparison with the Fabens, improved Fabens, James and a non-linear mixed-effects growth models, with the maximum likelihood method performing the best. The method is illustrated further with an application to blacklip abalone (Haliotis rubra) for which a strong growth-retarding tagging effect that persisted for several months was detected
Resumo:
James (1991, Biometrics 47, 1519-1530) constructed unbiased estimating functions for estimating the two parameters in the von Bertalanffy growth curve from tag-recapture data. This paper provides unbiased estimating functions for a class of growth models that incorporate stochastic components and explanatory variables. a simulation study using seasonal growth models indicates that the proposed method works well while the least-squares methods that are commonly used in the literature may produce substantially biased estimates. The proposed model and method are also applied to real data from tagged rack lobsters to assess the possible seasonal effect on growth.
Resumo:
The von Bertalanffy growth model is extended to incorporate explanatory variables. The generalized model includes the switched growth model and the seasonal growth model as special cases, and can also be used to assess the tagging effect on growth. Distribution-free and consistent estimating functions are constructed for estimation of growth parameters from tag-recapture data in which age at release is unknown. This generalizes the work of James (1991, Biometrics 47 1519-1530) who considered the classical model and allowed for individual variability in growth. A real dataset from barramundi (Lates calcarifer) is analysed to estimate the growth parameters and possible effect of tagging on growth.