968 resultados para seasonal dynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used 2012 sap flow measurements to assess the seasonal dynamics of daily plant transpiration (ETc) in a high-density olive orchard (Olea europaea L. cv. ‘Arbequina’) with a well-watered (HI) control treatment A to supply 100 % of the crop water needs, and a moderately (MI) watered treatment B that replaced 70% of crop needs. To assure that treatment A was well-watered, we compared field daily ETc values against ETc obtained with the Penman-Monteith (PM) combination equation incorporating the Orgaz et al. (2007) bulk daily canopy conductance (gc) model, validated for our non-limiting conditions. We then tested the hypothesis of indirectly monitoring olive ETc from readily available vegetation index (VI) and ground-based plant water stress indicator. In the process we used the FAO56 dual crop coefficient (Kc) approach. For the HI olive trees we defined Kcb as the basal transpiration coefficient, and we related Kcb to remotely sensed Soil Adjusted Vegetation Index (SAVI) through a Kcb-SAVI functional relationship. For the MI treatment, we defined the actual transpiration ETc as the product of Kcb and the stress reduction coefficient Ks obtained as the ratio of actual to crop ETc, and we correlated Ks with MI midday stem water potential (ψst) values through a Ks-ψ functional relationship. Operational monitoring of ETc was then implemented with the ETc = Kcb(SAVI)Ks(ψ)ETo relationship stemmed from the FAO56 approach and validated taking as inputs collected SAVI and ψst data reporting to year 2011. Low validation error (6%) and high goodness-of-fit of prediction were observed (R2 = 0.94, RSME = 0.2 mm day-1, P = 0.0015), allowing to consider that under field conditions it is possible to predict ETc values for our hedgerow olive orchards if SAVI and water potential (ψst) values are known.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This brief paper describes the significance of seasonal variation in clutch-size of the copepod Arctodiaptomus bacillifer in alpine lakes of high altitudes (Val Bognanco). Seasonal dynamics of the zooplankton of these lakes was studied during summer and autumn of 1968 and 1969and results are summarised.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the last century, the population of Pacific sardine (Sardinops sagax) in the California Current Ecosystem has exhibited large fluctuations in abundance and migration behavior. From approximately 1900 to 1940, the abundance of sardine reached 3.6 million metric tons and the “northern stock” migrated from offshore of California in the spring to the coastal areas near Oregon, Washington, and Vancouver Island in the summer. In the 1940s, the sardine stock collapsed and the few remaining sardine schools concentrated in the coastal region off southern California, year-round, for the next 50 years. The stock gradually recovered in the late 1980s and resumed its seasonal migration between regions off southern California and Canada. Recently, a model was developed which predicts the potential habitat for the northern stock of Pacific sardine and its seasonal dynamics. The habitat predictions were successfully validated using data from sardine surveys using the daily egg production method; scientific trawl surveys off the Columbia River mouth; and commercial sardine landings off Oregon, Washington, and Vancouver Island. Here, the predictions of the potential habitat and seasonal migration of the northern stock of sardine are validated using data from “acoustic–trawl” surveys of the entire west coast of the United States during the spring and summer of 2008. The estimates of sardine biomass and lengths from the two surveys are not significantly different between spring and summer, indicating that they are representative of the entire stock. The results also confirm that the model of potential sardine habitat can be used to optimally apply survey effort and thus minimize random and systematic sampling error in the biomass estimates. Furthermore, the acoustic–trawl survey data are useful to estimate concurrently the distributions and abundances of other pelagic fishes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The distribution and dynamics of microcystins in various organs of the phytoplanktivorous bighead carp were studied monthly in Lake Taihu, which is dominated by toxic cyanobacteria. There was a good agreement between LC-MS and HPLC-UV determinations. Average recoveries of spiked fish samples were 63% for MC-RR and 71% for MC-LR. The highest MC contents in intestine, liver, kidney and spleen were 85.67, 2.83, 1.70 and 1.57 mu g g(-1) DW, respectively. MCs were much higher in mid-gut walls (1.22 mu g g(-1) DW) than in hind- and fore-gut walls (0.31 and 0.18 mu g g(-1) DW, respectively), suggesting the importance of mid-gut wall as major site for MC absorption. A cysteine conjugate of MC-LR was detected frequently in kidney. Among the muscle samples analyzed, 25% were above the provisional tolerable daily intake level by WHO. Bighead is strongly resistant to microcystins and can be used as biomanipulation fish to counteract cyanotoxin contamination in eutrophic waters. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Forty-five male yaks (born April 2001) were studied to determine how seasonal changes on the Qinghai-Tibetan plateau affected BW and body composition. Thirty yaks were weighed monthly from birth to 26 mo of age to determine seasonal changes in BW. The remaining 15 yaks were allocated randomly to five groups (three yaks per group), designated for slaughter at 13, 15, 18, 22, and 25 mo to measure seasonal effects on body chemical composition. All yaks were grazed on the alpine-meadow grassland of the plateau without any supplementation. All BW and body composition data were calculated on an individual basis. Body weight and body composition data were both compared across seven growth periods spanning 2 yr and defined by season. From April (birth) to December 2001 of the first growing season, yak BW increased (P < 0.01); however, during the subsequent cold season (December 2001 to May 2002), BW decreased (P < 0.01). The second growing season ran from May 2002 (13 mo of age) to October 2002 (18 mo of age), and the second live weight-loss season ran from October 2002 until May 2003. The weight loss experienced by yaks during the first weight loss season was 25.64% of the total weight gain in the first growing season. The weight loss experienced by yaks during the second weight-loss season was 29.73% of the total weight gain in the second growing season. Energy retention in the second growing season was 291.07 MJ, 50.8% of which was consumed during the subsequent cold season. Energy accumulation in the summer (from May to July) and fall (from July to October) of the second growing season did not differ (5.01 and 6.30 MJ/kg of EBW gain, respectively; P = 0.63). The energy mobilized during the second winter (from October 2002 to February 2003) was 16.49 MJ/kg of EBW, and in the second spring (from February to May 2003), it was 9.06 MJ/kg of EBW. These data suggest that the decrease in grazing yak BW during the first cold season is much less than during the second cold season, and that the energy content per unit of BW mobilized is greater (P = 0.02) in winter than in spring. Results from this study demonstrate highly efficient compensatory growth in grazing yaks following the first weight loss period during the first cold season. This benefit could be exploited by herders to improve yak production. Yaks may have developed a type of self-protection mechanism to overcome the long cold seasons in the Qinghai-Tibetan plateau.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Macroalgal seasonality was studied monthly in a second-order stream in the north-west of São Paulo State, S.E. Brazil. Seasonal variation was based on frequency and percentage cover. Seven species were found during the study period, three of which ('Chantransia' stage of Sirodotia delicatula, Homoeothrix juliana and Klebsormidium subtile) were encountered throughout the year and showed well-defined seasonal patterns as well as the highest value of frequency and percentage cover. 'Chantransia' and H. juliana dominated in summer and fall, while for K. subtile winter was the most favourable period. The remaining species (Oscillatoria agardhii, Microcoleus subtorulosus, Oedogonium sp. and Chaetophora elegans) had no clear seasonal pattern, in addition to their low values of frequency and percentage cover. Individually, K. subtile correlated with higher number of physical and chemical variables (oxygen, pH, precipitation, temperature, daylength, conductance and turbidity) than 'Chantransia' and H. juliana (discharge and depth). Principal component analyses revealed that no single variable was responsible for the macroalgal seasonal dynamics. The variables most closely related to seasonal variation of the macroalgal community were daylength, precipitation, discharge, turbidity and dissolved oxygen. Precipitation and flow were suggested as key factors in determining seasonality of the macroalgae. © 1991 Kluwer Academic Publishers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the influence of seasonality on the behavior of phytoplankton associations in eutrophic reservoirs with different depths in northeastern Brazil. Five collections were carried out at each of the reservoirs at two depths (0.1 m and near the sediment) at three-month intervals in each season (dry and rainy). The phytoplankton samples were preserved in Lugol's solution and quantified under an inverted microscope for the determination of density values, which were subsequently converted to biomass values based on cellular biovolume and classified in phytoplankton associations. The following abiotic variables were analyzed: water temperature, dissolved oxygen, pH, turbidity, water transparency, total phosphorus, total dissolved phosphorus, orthophosphate and total nitrogen. The data were investigated using canonical correspondence analysis. The influence of seasonality on the dynamics of the phytoplankton community was lesser in the deeper reservoirs. Depth affected the behavior of the algal associations. Variation in light availability was a determinant of changes in the phytoplankton structure. Urosolenia and Anabaena associations were more abundant in shallow ecosystems with a larger eutrophic zone, whereas the Microcystis association was more related to deep ecosystems with adequate availability of nutrients. The distribution of Cyclotella, Geitlerinema, Planktothrix, Pseudanabaena and Cylindrospermopsis associations was different from that seen in subtropical regions and the substitution of these associations was related to a reduction in the eutrophic zone rather than the mixture zone. Published by Elsevier GmbH.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ecological models have often been used in order to answer questions that are in the limelight of recent researches such as the possible effects of climate change. The methodology of tactical models is a very useful tool comparison to those complex models requiring relatively large set of input parameters. In this study, a theoretical strategic model (TEGM ) was adapted to the field data on the basis of a 24-year long monitoring database of phytoplankton in the Danube River at the station of G¨od, Hungary (at 1669 river kilometer – hereafter referred to as “rkm”). The Danubian Phytoplankton Growth Model (DPGM) is able to describe the seasonal dynamics of phytoplankton biomass (mg L−1) based on daily temperature, but takes the availability of light into consideration as well. In order to improve fitting, the 24-year long database was split in two parts in accordance with environmental sustainability. The period of 1979–1990 has a higher level of nutrient excess compared with that of the 1991–2002. The authors assume that, in the above-mentioned periods, phytoplankton responded to temperature in two different ways, thus two submodels were developed, DPGM-sA and DPGMsB. Observed and simulated data correlated quite well. Findings suggest that linear temperature rise brings drastic change to phytoplankton only in case of high nutrient load and it is mostly realized through the increase of yearly total biomass.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The connectivity between the fish community of estuarine mangroves and that of freshwater habitats upstream remains poorly understood. In the Florida Everglades, mangrove-lined creeks link freshwater marshes to estuarine habitats downstream and may act as dry-season refuges for freshwater fishes. We examined seasonal dynamics in the fish community of ecotonal creeks in the southwestern region of Everglades National Park, specifically Rookery Branch and the North and watson rivers. Twelve low-order creeks were sampled via electrofishing, gill nets, and minnow traps during the wet season, transition period, and dry season in 2004-2005. Catches were greater in Rookery Branch than in the North and watson rivers, particularly during the transition period. Community composition varied seasonally in Rookery Branch, and to a greater extent for the larger species, reflecting a pulse of freshwater taxa into creeks as marshes upstream dried periodically. The pulse was short-lived, a later sample showed substantial decreases in freshwater fish numbers. No evidence of a similar influx was seen in the North and watson rivers, which drain shorter hydroperiod marshes and exhibit higher salinities. These results suggest that head-water creeks can serve as important dry-season refugia. Increased freshwater flow resulting from Everglades restoration may enhance this connectivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In 2005 we began a multi-year intensive monitoring and assessment study of tropical hardwood hammocks within two distinct hydrologic regions in Everglades National Park, under funding from the CERP Monitoring and Assessment Program. In serving as an Annual Report for 2010, this document, reports in detail on the population dynamics and status of tropical hardwood hammocks in Shark Slough and adjacent marl prairies during a 4-year period between 2005 and 2009. 2005-09 was a period that saw a marked drawdown in marsh water levels (July 2006 - July 2008), and an active hurricane season in 2005 with two hurricanes, Hurricane Katrina and Wilma, making landfall over south Florida. Thus much of our focus here is on the responses of these forests to annual variation in marsh water level, and on recovery from disturbance. Most of the data are from 16 rectangular permanent plots of 225-625 m2 , with all trees mapped and tagged, and bi-annual sampling of the tree, sapling, shrub, and herb layer in a nested design. At each visit, canopy photos were taken and later analyzed for determination of interannual variation in leaf area index and canopy openness. Three of the plots were sampled at 2-month intervals, in order to gain a better idea of seasonal dynamics in litterfall and litter turnover. Changes in canopy structure were monitored through a vertical line intercept method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This research examines three potential mechanisms by which bacteria can adapt to different temperatures: changes in strain-level population structure, gene regulation and particle colonization. For the first two mechanisms, I utilize bacterial strains from the Vibrionaceae family due to their ease of culturability, ubiquity in coastal environments and status as a model system for marine bacteria. I first examine vibrio seasonal dynamics in temperate, coastal water and compare the thermal performance of strains that occupy different thermal environments. Our results suggest that there are tradeoffs in adaptation to specific temperatures and that thermal specialization can occur at a very fine phylogenetic scale. The observed thermal specialization over relatively short evolutionary time-scales indicates that few genes or cellular processes may limit expansion to a different thermal niche. I then compare the genomic and transcriptional changes associated with thermal adaptation in closely-related vibrio strains under heat and cold stress. The two vibrio strains have very similar genomes and overall exhibit similar transcriptional profiles in response to temperature stress but their temperature preferences are determined by differential transcriptional responses in shared genes as well as temperature-dependent regulation of unique genes. Finally, I investigate the temporal dynamics of particle-attached and free-living bacterial community in coastal seawater and find that microhabitats exert a stronger forcing on microbial communities than environmental variability, suggesting that particle-attachment could buffer the impacts of environmental changes and particle-associated communities likely respond to the presence of distinct eukaryotes rather than commonly-measured environmental parameters. Integrating these results will offer new perspectives on the mechanisms by which bacteria respond to seasonal temperature changes as well as potential adaptations to climate change-driven warming of the surface oceans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Seasonal changes in environmental drivers - such as temperature, rainfall, and resource availability - have the potential to shape infection dynamics through their reverberating effects on biological processes including host abundance and susceptibility to infection. However, seasonality varies geographically. We therefore expect marked differences in infection dynamics between regions with different seasonal patterns. By pairing extensive Avian Influenza Virus (AIV) surveillance data - 65 358 individual bird samples from 12 species of dabbling ducks sampled at 174 locations across North America - with quantification of seasonality using remote sensed data indicative for primary productivity (normalised differenced vegetation index, NDVI), we provide evidence that seasonal dynamics influence infection dynamics across a continent. More pronounced epidemics were seen to occur in regions experiencing a higher degree of seasonality, and epidemics of lower amplitude and longer duration occurred in regions with a more protracted and lower seasonal amplitude. These results demonstrate the potential importance of geographic variation in seasonality for explaining geographic variation in the dynamics of infectious diseases in wildlife.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the effects of different types and quality of data on bioclimatic modeling predictions is vital to ascertaining the value of existing models, and to improving future models. Bioclimatic models were constructed using the CLIMEX program, using different data types – seasonal dynamics, geographic (overseas) distribution, and a combination of the two – for two biological control agents for the major weed Lantana camara L. in Australia. The models for one agent, Teleonemia scrupulosa Stål (Hemiptera:Tingidae) were based on a higher quality and quantity of data than the models for the other agent, Octotoma scabripennis Guérin-Méneville (Coleoptera: Chrysomelidae). Predictions of the geographic distribution for Australia showed that T. scrupulosa models exhibited greater accuracy with a progressive improvement from seasonal dynamics data, to the model based on overseas distribution, and finally the model combining the two data types. In contrast, O. scabripennis models were of low accuracy, and showed no clear trends across the various model types. These case studies demonstrate the importance of high quality data for developing models, and of supplementing distributional data with species seasonal dynamics data wherever possible. Seasonal dynamics data allows the modeller to focus on the species response to climatic trends, while distributional data enables easier fitting of stress parameters by restricting the species envelope to the described distribution. It is apparent that CLIMEX models based on low quality seasonal dynamics data, together with a small quantity of distributional data, are of minimal value in predicting the spatial extent of species distribution.