979 resultados para search engine (computing)
Resumo:
ACM Computing Classification System (1998): H3.3, H.5.5, J5.
Resumo:
This work contributes to the development of search engines that self-adapt their size in response to fluctuations in workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computational resources to or from the engine. In this paper, we focus on the problem of regrouping the metric-space search index when the number of virtual machines used to run the search engine is modified to reflect changes in workload. We propose an algorithm for incrementally adjusting the index to fit the varying number of virtual machines. We tested its performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud, while calibrating the results to compensate for the performance fluctuations of the platform. Our experiments show that, when compared with computing the index from scratch, the incremental algorithm speeds up the index computation 2–10 times while maintaining a similar search performance.
Resumo:
This research focuses on automatically adapting a search engine size in response to fluctuations in query workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computer resources to or from the engine. Our solution is to contribute an adaptive search engine that will repeatedly re-evaluate its load and, when appropriate, switch over to a dierent number of active processors. We focus on three aspects and break them out into three sub-problems as follows: Continually determining the Number of Processors (CNP), New Grouping Problem (NGP) and Regrouping Order Problem (ROP). CNP means that (in the light of the changes in the query workload in the search engine) there is a problem of determining the ideal number of processors p active at any given time to use in the search engine and we call this problem CNP. NGP happens when changes in the number of processors are determined and it must also be determined which groups of search data will be distributed across the processors. ROP is how to redistribute this data onto processors while keeping the engine responsive and while also minimising the switchover time and the incurred network load. We propose solutions for these sub-problems. For NGP we propose an algorithm for incrementally adjusting the index to t the varying number of virtual machines. For ROP we present an ecient method for redistributing data among processors while keeping the search engine responsive. Regarding the solution for CNP, we propose an algorithm determining the new size of the search engine by re-evaluating its load. We tested the solution performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud. Our experiments show that when we compare our NGP solution with computing the index from scratch, the incremental algorithm speeds up the index computation 2{10 times while maintaining a similar search performance. The chosen redistribution method is 25% to 50% faster than other methods and reduces the network load around by 30%. For CNP we present a deterministic algorithm that shows a good ability to determine a new size of search engine. When combined, these algorithms give an adapting algorithm that is able to adjust the search engine size with a variable workload.
Resumo:
The Smart Drug Search is publicly accessible at http://sing.ei.uvigo.es/sds/. The BIOMedical Search Engine Framework is freely available for non-commercial use at https://github.com/agjacome/biomsef
Resumo:
We consider the numerical treatment of the optical flow problem by evaluating the performance of the trust region method versus the line search method. To the best of our knowledge, the trust region method is studied here for the first time for variational optical flow computation. Four different optical flow models are used to test the performance of the proposed algorithm combining linear and nonlinear data terms with quadratic and TV regularization. We show that trust region often performs better than line search; especially in the presence of non-linearity and non-convexity in the model.
Resumo:
We consider the numerical treatment of the optical flow problem by evaluating the performance of the trust region method versus the line search method. To the best of our knowledge, the trust region method is studied here for the first time for variational optical flow computation. Four different optical flow models are used to test the performance of the proposed algorithm combining linear and nonlinear data terms with quadratic and TV regularization. We show that trust region often performs better than line search; especially in the presence of non-linearity and non-convexity in the model.
Resumo:
The vast majority of users don’t seek results beyond the second page offered by the search engine, so if a site fails to be among the top 20 (second page), it says that this page does not have good SEO and, therefore, is not visible to the user. The overall objective of this project is to conduct a study to discover the factors that determine (or not) the positioning of websites in a search engine.
Resumo:
Search engine optimization & marketing is a set of processes widely used on websites to improve search engine rankings which generate quality web traffic and increase ROI. Content is the most important part of any website. CMS web development is now become very essential for most of organizations and online businesses to develop their online system and websites. Every online business using a CMS wants to get users (customers) to make profit and ROI. This thesis comprises a brief study of existing SEO methods, tools and techniques and how they can be implemented to optimize a content base website. In results, the study provides recommendations about how to use SEO methods; tools and techniques to optimize CMS based websites on major search engines. This study compares popular CMS systems like Drupal, WordPress and Joomla SEO features and how implementing SEO can be improved on these CMS systems. Having knowledge of search engine indexing and search engine working is essential for a successful SEO campaign. This work is a complete guideline for web developers or SEO experts who want to optimize a CMS based website on all major search engines.
Resumo:
This study is dedicated to search engine marketing (SEM). It aims for developing a business model of SEM firms and to provide explicit research of trustworthy practices of virtual marketing companies. Optimization is a general term that represents a variety of techniques and methods of the web pages promotion. The research addresses optimization as a business activity, and it explains its role for the online marketing. Additionally, it highlights issues of unethical techniques utilization by marketers which created relatively negative attitude to them on the Internet environment. Literature insight combines in the one place both technical and economical scientific findings in order to highlight technological and business attributes incorporated in SEM activities. Empirical data regarding search marketers was collected via e-mail questionnaires. 4 representatives of SEM companies were engaged in this study to accomplish the business model design. Additionally, the fifth respondent was a representative of the search engine portal, who provided insight on relations between search engines and marketers. Obtained information of the respondents was processed qualitatively. Movement of commercial organizations to the online market increases demand on promotional programs. SEM is the largest part of online marketing, and it is a prerogative of search engines portals. However, skilled users, or marketers, are able to implement long-term marketing programs by utilizing web page optimization techniques, key word consultancy or content optimization to increase web site visibility to search engines and, therefore, user’s attention to the customer pages. SEM firms are related to small knowledge-intensive businesses. On the basis of data analysis the business model was constructed. The SEM model includes generalized constructs, although they represent a wider amount of operational aspects. Constructing blocks of the model includes fundamental parts of SEM commercial activity: value creation, customer, infrastructure and financial segments. Also, approaches were provided on company’s differentiation and competitive advantages evaluation. It is assumed that search marketers should apply further attempts to differentiate own business out of the large number of similar service providing companies. Findings indicate that SEM companies are interested in the increasing their trustworthiness and the reputation building. Future of the search marketing is directly depending on search engines development.
Resumo:
The primary objective of this thesis is to assess how the backlink portfolio structure and off site Search Engine Optimisation (SEO) elements influence ranking of UK based online nursery shops. The growth of the internet use demanded significant effort from companies to optimize and increase their online presence in order to cope with the increasing online competition. The new e-Commerce technology - called Search Engine Optimisation - has been developed that helped increase website visibility of companies. The SEO process involves on site elements (i.e. changing the parameters of the company's website such as keywords, title tags and meta descriptions) and off site elements (link building and social media marketing activity). Link Building is based on several steps of marketing planning including keyword research and competitor analysis. The underlying goal of keyword research is to understand the targeted market through identifying relevant keyword queries that are used by targeted costumer group. In the analysis, three types (geographic, field and company’s strategy related) and seven sources of keywords has been identified and used as a base of analysis. Following the determination of the most popular keywords, allinanchor and allintitle search has been conducted and the first ten results of the searches have been collected to identify the companies with the most significant web presence among the nursery shops. Finally, Link Profiling has been performed where the essential goal was to understand to what extent other companies' link structure is different that the base company's backlinks. Significant difference has been found that distinguished the top three companies ranking in the allinanchor and allintitle search. The top three companies, „Mothercare”, „Mamas and Papas” and „Kiddicare” maintained significantly better metrics regarding domain and page authority on the main landing pages, the average number of outbound links for link portfolio metric and in number of backlinks. These companies also ranked among the highest in page authority distribution and followed external linking.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Value of online business has grown to over one trillion USD. This thesis is about search engine optimization, which focus is to increase search engine rankings. Search engine optimization is an important branch of online marketing because the first page of search engine results is generating majority of the search traffic. Current articles about search engine optimization and Google are indicating that with the proper use of quality content, there is potential to improve search engine rankings. However, the existing search engine optimization literature is not noticing content at a sufficient level. To decrease that difference, the content-centered method for search engine optimization is constructed, and content in search engine optimization is studied. This content-centered method consists of three search engine optimization tactics: 1) content, 2) keywords, and 3) links. Two propositions were used for testing these tactics in a real business environment and results are suggesting that the content-centered method is improving search engine rankings. Search engine optimization is constantly changing because Google is adjusting its search algorithm regularly. Still, some long-term trends can be recognized. Google has said that content is growing its importance as a ranking factor in the future. The content-centered method is taking advance of this new trend in search engine optimization to be relevant for years to come.
Resumo:
Value of online business has grown to over one trillion USD. This thesis is about search engine optimization, which focus is to increase search engine rankings. Search engine optimization is an important branch of online marketing because the first page of search engine results is generating majority of the search traffic. Current articles about search engine optimization and Google are indicating that with the proper use of quality content, there is potential to improve search engine rankings. However, the existing search engine optimization literature is not noticing content at a sufficient level. To decrease that difference, the content-centered method for search engine optimization is constructed, and content in search engine optimization is studied. This content-centered method consists of three search engine optimization tactics: 1) content, 2) keywords, and 3) links. Two propositions were used for testing these tactics in a real business environment and results are suggesting that the content-centered method is improving search engine rankings. Search engine optimization is constantly changing because Google is adjusting its search algorithm regularly. Still, some long-term trends can be recognized. Google has said that content is growing its importance as a ranking factor in the future. The content-centered method is taking advance of this new trend in search engine optimization to be relevant for years to come.
Resumo:
This study examines the efficiency of search engine advertising strategies employed by firms. The research setting is the online retailing industry, which is characterized by extensive use of Web technologies and high competition for market share and profitability. For Internet retailers, search engines are increasingly serving as an information gateway for many decision-making tasks. In particular, Search engine advertising (SEA) has opened a new marketing channel for retailers to attract new customers and improve their performance. In addition to natural (organic) search marketing strategies, search engine advertisers compete for top advertisement slots provided by search brokers such as Google and Yahoo! through keyword auctions. The rationale being that greater visibility on a search engine during a keyword search will capture customers' interest in a business and its product or service offerings. Search engines account for most online activities today. Compared with the slow growth of traditional marketing channels, online search volumes continue to grow at a steady rate. According to the Search Engine Marketing Professional Organization, spending on search engine marketing by North American firms in 2008 was estimated at $13.5 billion. Despite the significant role SEA plays in Web retailing, scholarly research on the topic is limited. Prior studies in SEA have focused on search engine auction mechanism design. In contrast, research on the business value of SEA has been limited by the lack of empirical data on search advertising practices. Recent advances in search and retail technologies have created datarich environments that enable new research opportunities at the interface of marketing and information technology. This research uses extensive data from Web retailing and Google-based search advertising and evaluates Web retailers' use of resources, search advertising techniques, and other relevant factors that contribute to business performance across different metrics. The methods used include Data Envelopment Analysis (DEA), data mining, and multivariate statistics. This research contributes to empirical research by analyzing several Web retail firms in different industry sectors and product categories. One of the key findings is that the dynamics of sponsored search advertising vary between multi-channel and Web-only retailers. While the key performance metrics for multi-channel retailers include measures such as online sales, conversion rate (CR), c1ick-through-rate (CTR), and impressions, the key performance metrics for Web-only retailers focus on organic and sponsored ad ranks. These results provide a useful contribution to our organizational level understanding of search engine advertising strategies, both for multi-channel and Web-only retailers. These results also contribute to current knowledge in technology-driven marketing strategies and provide managers with a better understanding of sponsored search advertising and its impact on various performance metrics in Web retailing.