999 resultados para seagrass die-off


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Oxygen and sulphide dynamics were examined, using microelectrode techniques, in meristems and rhizomes of the seagrass Thalassia testudinum at three different sites in Florida Bay, and in the laboratory, to evaluate the potential role of internal oxygen variability and sulphide invasion in episodes of sudden die-off. The sites differed with respect to shoot density and sediment composition, with an active die-off occurring at only one of the sites. 2 Meristematic oxygen content followed similar diel patterns at all sites with high oxygen content during the day and hyposaturation relative to the water column during the night. Minimum meristematic oxygen content was recorded around sunrise and varied among sites, with values close to zero at the die-off site. 3 Gaseous sulphide was detected within the sediment at all sites but at different concentrations among sites and within the die-off site. Spontaneous invasion of sulphide into Thalassia rhizomes was recorded at low internal oxygen partial pressure during darkness at the die-off site. 4 A laboratory experiment showed that the internal oxygen dynamics depended on light availability, and hence plant photosynthesis, and on the oxygen content of the water column controlling passive oxygen diffusion from water column to leaves and belowground tissues in the dark. 5 Sulphide invasion only occurred at low internal oxygen content, and the rate of invasion was highly dependent on the oxygen supply to roots and rhizomes. Sulphide was slowly depleted from the tissues when high oxygen partial pressures were re-established through leaf photosynthesis. Coexistence of sulphide and oxygen in the tissues and the slow rate of sulphide depletion suggest that sulphide reoxidation is not biologically mediated within the tissues of Thalassia. 6 Our results support the hypothesis that internal oxygen stress, caused by low water column oxygen content or poor plant performance governed by other environmental factors, allows invasion of sulphide and that the internal plant oxygen and sulphide dynamics potentially are key factors in the episodes of sudden die-off in beds of Thalassia testudinum . Root anoxia followed by sulphide invasion may be a more general mechanism determining the growth and survival of other rooted plants in sulphate-rich aquatic environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal ecosystems around the world are constantly changing in response to interacting shifts in climate and land and water use by expanding human populations. The development of agricultural and urban areas in South Florida significantly modified its hydrologic regime and influenced rates of environmental change in wetlands and adjacent estuaries. This study describes changes in diatom species composition through time from four sediment cores collected across Florida Bay, for the purposes of detecting periods of major shifts in assemblage structure and identifying major drivers of those changes. We examined the magnitude of diatom assemblage change in consecutive 2-cm samples of the 210Pb-dated cores, producing a record of the past ~130 years. Average assemblage dissimilarity among successive core samples was ~30%, while larger inter-sample and persistent differences suggest perturbations or directional shifts. The earliest significant compositional changes occurred in the late 1800s at Russell Bank, Bob Allen Bank and Ninemile Bank in the central and southwestern Bay, and in the early 1900s at Trout Cove in the northeast. These changes coincided with the initial westward redirection of water from Lake Okeechobee between 1881 and 1894, construction of several canals between 1910 and 1915, and building the Florida Overseas Railroad between 1906 and 1916. Later significant assemblage restructurings occurred in the northeastern and central Bay in the late 1950s, early 1960s and early 1970s, and in the southwestern Bay in the 1980s. These changes coincide with climate cycles driving increased hurricane frequency in the 1960s, followed by a prolonged dry period in the 1970s to late 1980s that exacerbated the effects of drainage operations in the Everglades interior. Changes in the diatom assemblage structure at Trout Cove and Ninemile Bank in the 1980s correspond to documented eutrophication and a large seagrass die-off. A gradual decrease in the abundance of freshwater to brackish water taxa in the cores over ~130 years implies that freshwater deliveries to Florida Bay were much greater prior to major developments on the mainland. Salinity, which was quantitatively reconstructed at these sites, had the greatest effect on diatom communities in Florida Bay, but other factors—often short-lived, natural and anthropogenic in nature—also played important roles in that process. Studying the changes in subfossil diatom communities over time revealed important environmental information that would have been undetected if reconstructing only one water quality variable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical and biological properties of the water column of Florida Bay were examined at seven study sites over an eighteen month period. The results indicated seasonality in some parameters, but was not evident in others. The data displayed statistically significant (P < 0.05) differences between study sites indicating spatial variation. The presence of seagrass affected the overlying water column, especially with respect to the biological parameters: those areas overlying seagrass beds displayed statistically significantly higher values than those over sparsely covered or barren areas. During the period of the study, Florida Bay experienced a seagrass die-off event: microbial activity and numbers were statistically significantly higher over areas of dying seagrass than over healthy or dead areas. The results of this study pointed to phosphorus being the controlling, or limiting factor, for microbial activity in the water column of Florida Bay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A suite of seagrass indicator metrics is developed to evaluate four essential measures of seagrass community status for Florida Bay. The measures are based on several years of monitoring data using the Braun-Blanquet Cover Abundance (BBCA) scale to derive information about seagrass spatial extent, abundance, species diversity and presence of target species. As ecosystem restoration proceeds in south Florida, additional freshwater will be discharged to Florida Bay as a means to restore the bay's hydrology and salinity regime. Primary hypotheses about restoring ecological function of the keystone seagrass community are based on the premise that hydrologic restoration will increase environmental variability and reduce hypersalinity. This will create greater niche space and permit multiple seagrass species to co-exist while maintaining good environmental conditions for Thalassia testudinum, the dominant climax seagrass species. Greater species diversity is considered beneficial to habitat for desired higher trophic level species such as forage fish and shrimp. It is also important to maintenance of a viable seagrass community that will avoid die-off events observed in the past. Indicator metrics are assigned values at the basin spatial scale and are aggregated to five larger zones. Three index metrics are derived by combining the four indicators through logic gates at the zone spatial scale and aggregated to derive a single bay-wide system status score standardized on the System-wide Indicator protocol. The indicators will provide a way to assess progress toward restoration goals or reveal areas of concern. Reporting for each indicator, index and overall system status score is presented in a red–yellow–green format that summarizes information in a readily accessible form for mangers, policy-makers and stakeholders in planning and implementing an adaptive management strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine pathogens of the genus Labyrinthula have been identified as the cause of wasting disease in seagrass systems in both temperate and subtropical regions. An understanding of the association between environmental factors and the prevalence of wasting disease in seagrass meadows is important for elucidating plant-pathogen interactions in coastal environments. We conducted a survey of 7 turtle grass-dominated beds within the Florida Keys National Marine Sanctuary to assess the relationship between environmental and biological parameters on seagrass health. All sites contained Labyrinthula spp.; the most pathogenic strain was obtained from an anthropogenically impacted site. Leaf and total biomass, in addition to root/rhizome carbon content, canopy light and % light transmitted, all displayed strong negative correlations with a wasting index (WI). It was noted that many of the same environmental measurements that showed negative correlations with WI also displayed strong positive correlations with canopy light levels. These data suggest that light availability may be an important factor that has previously been understated in the seagrass disease literature yet warrants more attention with respect to turtle grass susceptibility to infection. Studies such as this are important because they identify gaps in our understanding of plant-pathogen interactions in subtropical marine ecosystems. Furthermore, the relationships identified in this study may offer insight into which factors are most useful in identifying "at-risk" meadows prior to the onset of larger scale die-off events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. Litter samples were collected at the end of the production cycle from spread litter in a single shed from each of 28 farms distributed across the three Eastern seaboard States of Australia. 2. The geometric mean for Salmonella was 44 Most Probable Number (MPN)/g for the 20 positive samples. Five samples were between 100 and 1000 MPN/g and one at 105 MPN/g, indicating a range of factors are contributing to these varying loads of this organism in litter. 3. The geometric mean for Campylobacter was 30 MPN/g for the 10 positive samples, with 7 of these samples being 100 MPN/g. The low prevalence and incidence of Campylobacter were possibly due to the rapid die-off of this organism. 4. E. coli values were markedly higher than the two key pathogens (geometric mean 20 x 105 colony forming units (cfu)/g) with overall values being more or less within the same range across all samples in the trial, suggesting a uniform contribution pattern of these organisms in litter. 5. Listeria monocytogenes was absent in all samples and this organism appears not to be an issue in litter. 6. The dominant (70% of the isolates) Salmonella serovar was S. Sofia (a common serovar isolated from chickens in Australia) and was isolated across all regions. Other major serovars were S. Virchow and S. Chester (at 10%) and S. Bovismorbificans and S. Infantis (at 8%) with these serovars demonstrating a spatial distribution across the major regions tested. 7. There is potential to re-use litter in the environment depending on end use and the support of relevant application practices and guidelines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thus the objectives of this study can be broadly categorised as follows:-  Evaluate current practices adopted (e.g. litter pile-up) prior to re-use of litter for subsequent chicken cycles  To establish pathogen die-off that occurs during currently adopted methods of in-shed treatment of litter  To establish simple physical parameters to monitor this pathogen reduction and create an understanding of such reduction strategies to aid in-shed management of re-use litter  To carry out studies to assess the potential of the re-used litter (once spread) to support pathogens during a typical chicken production cycle.  To provide background data for the development of a simple code of practice for an in-shed litter pile-up process

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since 1999, NOAA’s Biogeography Branch of the Center for Coastal Monitoring and Assessment (CCMA-BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around northeastern St. Croix, U.S. Virgin Islands. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance, and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort in northeastern St. Croix was conducted through partnerships with the National Park Service (NPS) and the Virgin Islands Department of Planning and Natural Resources (VI-DPNR). The geographical focal point of the research is Buck Island Reef National Monument (BIRNM), a protected area originally established in 1961 and greatly expanded in 2001; however, the work also encompassed a large portion of the recently created St. Croix East End Marine Park (EEMP). Project funding is primarily provided by NOAA CRCP, CCMA and NPS. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem around northeastern St. Croix have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a series of hurricanes beginning with Hurricane Hugo in 1989, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem and a dramatic change in management strategy in 2003 when the park’s Interim Regulations (Presidential Proclamation No. 7392) established BIRNM as one of the first fully protected marine areas in NPS system, it became critical to identify existing marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first six years of fish survey data (2001-2006) and associated characterization of the benthos (1999-2006). The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure inside (protected) versus outside (fished) areas of BIRNM. (PDF contains 100 pages).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Pennekamp Coral Reef State Park was established in 1960 and the Key Largo National Marine Sanctuary in 1975. Field studies, funded by NOAA, were conducted in 1980 - 1981 to determine the state of the coral reefs and surrounding areas in relation to changing environmental conditions and resource management that had occurred over the intervening years. Ten reef sites within the Sanctuary and seven shallow grass and hardbottom sites within the Park were chosen for qualitative and quantitative studies. At each site, three parallel transects not less than 400 m long were run perpendicular to the reef or shore, each 300 m apart. Observations, data collecting and sampling were done by two teams of divers. Approximately 75 percent of the bottom within the 18-m isobath was covered by marine grasses, predominantly turtle grass. The general health of the seagrasses appeared good but a few areas showed signs of stress. The inner hardbottom of the Park was studied at the two entrances to Largo Sound. Though at the time of the study the North Channel hardbottom was subjected to only moderate boat traffic, marked changes had taken place over the past years, the most obvious of which was the loss of the extensive beds of Sargassum weed, one of the most extensive beds of this alga in the Keys. Only at this site was the green alga Enteromorpha encountered. This alga, often considered a pollution indicator, may denote the effects of shore run off. The hardbottom at South Channel and the surrounding grass beds showed signs of stress. This area bears the heaviest boat traffic within the Park waters causing continuous turbidity from boat wakes with resulting siltation. The offshore hardbottom and rubble areas in the Sanctuary appeared to be in good health and showed no visible indications of deterioration. Damage by boat groundings and anchors was negligible in the areas surveyed. The outer reefs in general appear to be healthy. Corals have a surprising resiliency to detrimental factors and, when conditions again become favorable, recover quickly from even severe damage. It is, therefore, a cause for concern that Grecian Rocks, which sits somewhat inshore of the outer reef line, has yet to recover from die-off in 1978. The slow recovery, if occurring, may be due to the lower quality of the inshore waters. The patch reefs, more adapted to inshore waters, do not show obvious stress signs, at least those surveyed in this study. It is apparent that water quality was changing in the keys. Water clarity over much of the reef tract was observed to be much reduced from former years and undoubtedly plays an important part in the stresses seen today over the Sanctuary and Park. (PDF contains 119 pages)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analyses of blood and liver samples from live captured sea otters and liver samples from beachcast sea otter carcasses off the remote Washington coast indicate relatively low exposure to contaminants, but suggest that even at the low levels measured, exposure may be indicated by biomarker response. Evidence of pathogen exposure is noteworthy - infectious disease presents a potential risk to Washington sea otters, particularly due to their small population size and limited distribution. During 2001 and 2002, 32 sea otters were captured, of which 28 were implanted with transmitters to track their movements and liver and blood samples were collected to evaluate contaminant and pathogen exposure. In addition, liver samples from fifteen beachcast animals that washed ashore between 1991 and 2002 were analyzed to provide historical information and a basis of reference for values obtained from live otters. The results indicate low levels of metals, butyltins, and organochlorine compounds in the blood samples, with many of the organochlorines not detected except polychlorinated biphenyls (PCBs), and a few aromatic hydrocarbons detected in the liver of the live captured animals. Aliphatic hydrocarbons were measurable in the liver from the live captured animals; however, some of these are likely from biogenic sources. A significant reduction of vitamin A storage in the liver was observed in relation to PCB, dibutyltin and octacosane concentration. A significant and strong positive correlation in vitamin A storage in the liver was observed for cadmium and several of the aliphatic hydrocarbons. Peripheral blood mononuclear cell (PBMC) cytochrome P450 induction was elevated in two of 16 animals and may be potentially related to aliphatic and aromatic hydrocarbon exposure. Mean concentration of total butyltin in the liver of the Washington beach-cast otters was more than 15 times lower than the mean concentration reported by Kannan et al. (1998) for Southern sea otters in California. Organochlorine compounds were evident in the liver of beach-cast animals, despite the lack of large human population centers and development along the Washington coast. Concentrations of PCBs and chlordanes (e.g., transchlordane, cis-chlordane, trans-nonachlor, cis-nonachlor and oxychlordane) in liver of Washington beach-cast sea otters were similar to those measured in Aleutian and California sea otters, excluding those from Monterey Bay, which were higher. Mean concentrations of 1,1,1,- trichloro-2,2-bis(p-chlorophyenyl)ethanes (DDTs) were lower, and mean concentrations of cyclohexanes (HCH, e.g., alpha BHC, beta BHC, delta BHC and gamma BHC) were slightly higher in Washington beach-cast otters versus those from California and the Aleutians. Epidemiologically, blood tests revealed that 80 percent of the otters tested positive for morbillivirus and 60 percent for Toxoplasma, the latter of which has been a significant cause of mortality in Southern sea otters in California. This is the first finding of positive morbillivirus titers in sea otters from the Northeast Pacific. Individual deaths may occur from these diseases, perhaps more so when animals are otherwise immuno-compromised or infected with multiple diseases, but a population-threatening die-off from these diseases singly is unlikely while population immunity remains high. The high frequency of detection of morbillivirus and Toxoplasma in the live otters corresponds well with the cause of death of stranded Washington sea otters reported herein, which has generally been attributable to infectious disease. Washington’s sea otter population continues to grow, with over 1100 animals currently inhabiting Washington waters; however, the rate of growth has slowed over recent years. The population has a limited distribution and has not yet reached its carrying capacity and as such, is still considered at high risk to catastrophic events. (PDF contains 189 pages)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Outfall at sea of sewage from Abidjan requires information about the die-off of bacteria in the sea. The method of determination is described and validity of data is analysed. These preliminary results point out some features about the choice of methodology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scientific and anecdotal observations during recent decades have suggested that the structure and function of the coral reef ecosystems around St. John, U.S. Virgin Islands have been impacted adversely by a wide range of environmental stressors. Major stressors included the mass die-off of the long-spined sea urchin (Diadema antillarum) in the early 1980s, a series of hurricanes (David and Frederick in 1979, and Hugo in 1989), overfishing, mass mortality of Acropora species and other reef-building corals due to disease and several coral bleaching events. In response to these adverse impacts, the National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) collaborated with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around the island from 2001 to 2012. This 13-year monitoring effort, known as the Caribbean Coral Reef Ecosystem Monitoring Project (CREM), was supported by the NOAA Coral Reef Conservation Program as part of their National Coral Reef Ecosystem Monitoring Program. This technical memorandum contains analysis of nine years of data (2001-2009) from in situ fish belt transect and benthic habitat quadrat surveys conducted in and around the Virgin Islands National Park (VIIS) and the Virgin Islands Coral Reef National Monument (VICR). The purpose of this document is to: 1) Quantify spatial patterns and temporal trends in (i) benthic habitat composition and (ii) fish species abundance, size structure, biomass, and diversity; 2) Provide maps showing the locations of biological surveys and broad-scale distributions of key fish and benthic species and assemblages; and 3) Compare benthic habitat composition and reef fish assemblages in areas under NPS jurisdiction with those in similar areas not managed by NPS (i.e., outside of the VIIS and VICR boundaries). This report provides key information to help the St. John management community and others understand the impacts of natural and man-made perturbations on coral reef and near-shore ecosystems. It also supports ecosystem-based management efforts to conserve the region’s coral reef and related fauna while maintaining the many goods and ecological services that they offer to society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since 1999, NOAA’s Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) has been working with federal and territorial partners to characterize monitor and assess the status of the marine environment in southwestern Puerto Rico. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort of the La Parguera region in southwestern Puerto Rico was conducted through partnerships with the University of Puerto Rico (UPR) and the Puerto Rico Department of Natural and Environmental Resources (DNER). Project funding was primarily provided by NOAA CRCP and CCMA. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem in the La Parguera region have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a suite of hurricanes, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem several activities are underway or have been implemented to manage the marine resources. These efforts have been supported by the CREM project by identifying marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first seven years of fish survey data (2001-2007) and associated characterization of the benthos. The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure across the seascape including fringing mangroves, inner, middle, and outer reef areas, and open ocean shelf bank areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Flower Garden Banks National Marine Sanctuary (FGBNMS) is located in the northwestern Gulf of Mexico approximately 180 km south of Galveston, Texas. The sanctuary’s distance from shore combined with its depth (the coral caps reach to within approximately 17 m of the surface) result in limited exposure of this coral reef ecosystem to natural and human-induced impacts compared to other coral reefs of the western Atlantic. In spite of this, the sanctuary still confronts serious impacts including hurricanes events, recent outbreaks of coral disease, an increase in the frequency of coral bleaching and the massive Diadema antillarum die-off during the mid-1980s. Anthropogenic impacts include large vessel anchoring, commercial and recreational fishing, recreational scuba diving, and oil and gas related activities. The FGBNMS was designated in 1992 to help protect against some of these impacts. Basic monitoring and research efforts have been conducted on the banks since the 1970s. Early on, these efforts focused primarily on describing the benthic communities (corals, sponges) and providing qualitative characterizations of the fish community. Subsequently, more quantitative work has been conducted; however, it has been limited in spatial scope. To complement these efforts, the current study addresses the following two goals put forth by sanctuary management: 1) to develop a sampling design for monitoring benthic fish communities across the coral caps; and 2) to obtain a spatial and quantitative characterization of those communities and their associated habitats.