997 resultados para sea salt
Resumo:
The kinetics of uptake of gaseous N2O5 on submicron aerosols containing NaCl and natural sea salt have been investigated in a flow reactor as a function of relative humidity (RH) in the range 30-80% at 295±2K and a total pressure of 1bar. The measured uptake coefficients, γ, were larger on the aerosols containing sea salt compared to those of pure NaCl, and in both cases increased with increasing RH. These observations are explained in terms of the variation in the size of the salt droplets, which leads to a limitation in the uptake rate into small particles. After correction for this effect the uptake coefficients are independent of relative humidity, and agree with those measured previously on larger droplets. A value of γ=0.025 is recommended for the reactive uptake coefficient for N2O5 on deliquesced sea salt droplets at 298K and RH>40%.
Resumo:
Long-term monitoring data from eastern North America and Europe indicate a link between increased dissolved organic carbon (DOC) concentrations in surface waters over the last two decades and decreased atmospheric pollutant and marine sulphur (S) deposition. The hypothesis is that decreased acidity and ionic strength associated with declining S deposition has increased the solubility of DOC. However, the sign and magnitude of DOC trends have varied between sites, and in some cases at sites where S deposition has declined, no significant increase in DOC has been observed, creating uncertainty about the causal mechanisms driving the observed trends. In this paper, we demonstrate chemical regulation of DOC release from organic soils in batch experiments caused by changes in acidity and conductivity (measured as a proxy for ionic strength) associated with controlled SO42− additions. DOC release from the top 10 cm of the O-horizon of organo-mineral soils and peats decreased by 21–60% in response to additions of 0–437 µeq SO42− l−1 sulphuric acid (H2SO4) and neutral sea-salt solutions (containing Na+, Mg2+, Cl−, SO42−) over a 20-hour extraction period. A significant decrease in the proportion of the acid-sensitive coloured aromatic humic acids (measured by specific ultra-violet absorbance (SUVA) at 254 nm) was also found with increasing acidity (P < 0.05) in most, but not all, soils, confirming that DOC quality, as well as quantity, changed with SO42− additions. DOC release appeared to be more sensitive to increased acidity than to increased conductivity. By comparing the change in DOC release with bulk soil properties, we found that DOC release from the O-horizon of organo-mineral soils and semi-confined peats, which contained greater exchangeable aluminium (Al) and had lower base saturation (BS), were more sensitive to SO42− additions than DOC release from blanket peats with low concentrations of exchangeable Al and greater BS. Therefore, variation in soil type and acid/base status between sites may partly explain the difference in the magnitude of DOC changes seen at different sites where declines in S deposition have been similar.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The objective of this study is to understand the reasons for the enhancement in aerosol optical depth (AOD) over the Arabian Sea observed during June, July and August. During these months, high values of AOD are found over the sea beyond 10◦ N and adjacent regions. The Arabian Sea is bounded by the lands of Asia and Africa on its three sides. So the region is influenced by transported aerosols from the surroundings as well as aerosols of local origin (marine aerosols). During the summer monsoon season in India, strong surface winds with velocities around 15 m s−1 are experienced over most parts of the Arabian Sea. These winds are capable of increasing sea spray activity, thereby enhancing the production of marine aerosols. The strong winds increase the contribution of marine aerosols over the region to about 60% of the total aerosol content. The main components of marine aerosols include sea salt and sulphate particles. The remaining part of the aerosol particles comes from the western and northern land masses around the sea, of which the main component is transported dust particles. This transport is observed at higher altitudes starting from 600 m. At low levels, the transport occurs mainly from the Indian Ocean and the Arabian Sea itself, indicating the predominance of marine aerosols at these levels. The major portion of the total aerosol loading was contributed by coarse-mode particles during the period of study. But in the winter season, the concentration of coarse-mode aerosols is found to be less. From the analysis, it is concluded that the increase in marine aerosols and dust particles transported from nearby deserts results in an increase in aerosol content over the Arabian Sea during June, July and August.
Resumo:
In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.
Resumo:
Chemistry data from 16, 50-115 m deep, sub-annually dated ice cores are used to investigate spatial and temporal concentration variability of sea-salt (ss) SO42- and excess (xs) SO42- over West Antarctica and the South Pole for the last 200 years. Low-elevation ice-core sites in western West Antarctica contain higher concentrations Of SO42- as a result of cyclogenesis over the Ross Ice Shelf and proximity to the Ross Sea Polynya. Linear correlation analysis of 15 West Antarctic ice-core SO42- time series demonstrates that at several sites concentrations Of ssSO(4)(2-) are higher when sea-ice (SIE) extent is greater, and the inverse for XSS04. Concentrations Of XSS04 from the South Pole site (East Antarctica) are associated with SIE from the Weddell region, and West Antarctic XSSO42- concentrations are associated with SIE from the Bellingshausen-Amundsen-Ross region. The only notable rise of the last 200 years in xsSO(4)(2-), around 1940, is not related to SIE fluctuations and is most likely a result of increased xsSO(4)(2-) production in the mid-low latitudes and/or an increase in transport efficiency from the mid-low latitudes to central West Antarctica. These high-resolution records show that the source types and source areas Of ssSO(4)(2-) and xsSO(4)(2-) delivered to eastern and western West Antarctica and the South Pole differ from site to site but can best be resolved using records from spatial ice-core arrays such as the International Trans-Antarctic Scientific Expedition (ITASE).
Resumo:
A 250-year, high-resolution, multivariate ice core record from LGB65 (70degrees50'07"S, 77degrees04'29"E; 1850 m asl), Princess Elizabeth Land (PEL), is used to investigate sea level pressure (SLP) variability over the southern Indian Ocean (SIO). Empirical orthogonal function (EOF) analysis reveals that the first EOF (EOF1) of the glaciochemical record from LGB65 represents most of the variability in sea salt throughout the 250-year record. EOF1 is negatively correlated (95% confidence level and higher) to instrumental mean sea level pressure (MSLP) at Kerguelen and New Amsterdam islands, SIO. On the basis of comparison with NCEP/NCAR reanalysis, strong correlations were found between sea-salt variations and a quasi-stationary low that lies to the north of Prydz Bay, SIO. Comparison with a 250-year-long summer transpolar index (STPI) inferred from sub-Antarctic tree ring records reveals strong coherency. Decadal-scale SLP variability over SIO suggests shifting of the polar vortex. Prominent decadal-scale deepening of the southern Indian Ocean low (SIOL) exists circa 1790, 1810, 1835, 1860, 1880, 1900, and 1940 A. D., continuously after the 1970s, and prominent weakening circa 1750, 1795, 1825, 1850, 1870, 1890, 1910, and 1955 A. D. The LGB65 sea-salt record is characterized by significant decadal-scale variability with a strong similar to21-year periodic structure (99.9% confidence level). The relationship between LGB65 sea salt and solar irradiance changes shows that this periodicity is possibly the solar Hale cycle ( 22 years).
Resumo:
Hot brines in depressions of the central Red Sea contain thousands of times more iron, manganese and other metals than . After removal of salts, approximately half of sediments from these depressions consists of iron hydroxides and they are enriched in zinc, copper, lead and molybdenum. Hydrothermal deposits with the same complex of metals, located along the coast of the Red Sea, are correlated with faults and may be due to occurrences of Tertiary volcanism. Brines of similar composition are known in the Cheleken Peninsula. Certain geological and geochemical data indicate that such brines are of relatively deep origin.
Resumo:
This paper provides an overview of dust transport pathways and concentrations over the Arabian Sea during 1995. Results indicate that the transport and input of dust to the region is complex, being affected by both temporally and spatially important processes. Highest values of dust were found off the Omani coast and in the entrance to the Gulf of Oman. Dust levels were generally lower in summer than the other seasons, although still relatively high compared to other oceanic regions. The Findlater jet, rather than acting as a source of dust from Africa, appears to block the direct transport of dust to the open Arabian Sea from desert dust source regions in the Middle East and Iran/Pakistan. Dust transport aloft, above the jet, rather than at the surface, may be more important during summer. In an opposite pattern to dust, sea salt levels were exceedingly high during the summer monsoon, presumably due to the sustained strong surface winds. The high sea salt aerosols during the summer months may be impacting on the strong aerosol reflectance and absorbance signals over the Arabian Sea that are detected by satellite each year.
Resumo:
We studied two deep-sea cores from the Scotia Sea to reconstruct past atmospheric circulation in the southern hemisphere and to resolve a long-standing debate on the interpretation of magnetic susceptibility (MS) records in Southern Ocean (SO) sediment. High-sedimentation sites MD07-3134 (0.2 - 1.2 m/kyr) and MD07-3133 (0.3 - 2 m/kyr) cover the last 92.5 kyr and 36 kyr, respectively. Both exhibit a one-to-one coupling of the MS and Ca2+ signal to the non-sea salt (nss) Ca2+ signal of the EDML ice core, clearly identifying atmospheric circulation as means of distribution. Comparison of additional proxies also excludes major influence by volcanic sources, sea-ice, icebergs, or oceanic current transport. The close resemblance of the dust proxies over the last glacial cycle, in turn, allows for the establishment of an age model of unprecedented resolution and precision for SO deep-sea sediment because atmospheric transport involves no major leads or lags. This is of particular importance because MS is routinely measured on deep-sea cores in the SO but the sediments usually lack biogenic carbonate and therefore had only limited stratigraphic control so far. Southern South America (SSA) is the likely source of eolian material because Site MD07-3133, located closer to the continent, has slightly higher MS values than Site MD07-3134, and also the MS record of Patagonian Site SALSA shows comparable variability. Patagonia was the dust source for both the Scotia Sea and East Antarctica. Dust fluxes were several times higher during glacial times, when atmospheric circulation was either stronger or shifted in latitude, sea level was lowered, shelf surfaces were exposed, and environmental conditions in SSA were dominated by glaciers and extended outwash plains. Hence, MS records of SO deep-sea sediment are reliable tracers of atmospheric circulation, allowing for chronologically-constrained reconstructions of the circum Antarctic paleoclimate history.
Resumo:
From November 2004 to December 2007, size-segregated aerosol samples were collected all-year-round at Dome C (East Antarctica) by using PM10 and PM2.5 samplers, and multi-stage impactors. The data set obtained from the chemical analysis provided the longest and the most time-resolved record of sea spray aerosol (sea salt Na+) in inner Antarctica. Sea spray showed a sharp seasonal pattern. The highest values measured in winter (Apr-Nov) were about ten times larger than in summer (Dec-Mar). For the first time, a size-distribution seasonal pattern was also shown: in winter, sea spray particles are mainly submicrometric, while their summer size-mode is around 1-2 µm. Meteorological analysis on a synoptic scale allowed the definition of atmospheric conditions leading sea spray to Dome C. An extreme-value approach along with specific environmental based criteria was taken to yield stronger fingerprints linking atmospheric circulation (means and anomalies) to extreme sea spray events. Air mass back-trajectory analyses for some high sea spray events allowed the identification of two major air mass pathways, reflecting different size distributions: micrometric fractions for transport from the closer Indian-Pacific sector, and sub-micrometric particles for longer trajectories over the Antarctic Plateau. The seasonal pattern of the SO4**2- /Na+ ratio enabled the identification of few events depleted in sulphate, with respect to the seawater composition. By using methanesulphonic acid (MSA) profile to evaluate the biogenic SO4**2- contribution, a more reliable sea salt sulphate was calculated. In this way, few events (mainly in April and in September) were identified originating probably from the "frost flower" source. A comparison with daily-collected superficial snow samples revealed that there is a temporal shift between aerosol and snow sea spray trends. This feature could imply a more complex deposition processes of sea spray, involving significant contribution of wet and diamond dust deposition, but further work has to be carried out to rule out the effect of wind re-distribution and to have more statistic significance.