998 resultados para scintillator materials


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Color centers and impurity defects of Ce:YAG crystals grown in reduction atmosphere by temperature gradient techniques have been investigated by means of gamma irradiation and thermal treatments. Four absorption bands associated with color centers or impurity defects at 235, 255, 294 and 370 nm were observed in as-grown crystals. Changes in optical intensity of the 235 and 370 nm bands after gamma irradiation indicate that they are associated with F+-type color center. Charge state change processes of Fe3+ impurity and Ce3+ ions take place in the irradiation process. The variations of Ce3+ ions concentration clearly indicate that Ce4+ ions exist in Ce:YAG crystals and gamma irradiations could increase the concentration of Ce3+ ions. Annealing treatments and the changes in optical density suggest that a heterovalent impurity ion associated with the 294 nm band seems to be present in the crystals. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerium doped yttrium aluminate perovskite YAlO(3) (YAP) powders are pursued as interesting alternatives to bulk crystals for application in scintillating devices. The emissions of these materials in the near-UV and visible spectral regions originate from electric dipole transitions between 4f and 5d energy levels of Ce(3+) and largely depend on the environment occupied by the ion. In search for improved synthesis conditions that can lead to phase pure powders with optimized structural and spectroscopic characteristics, in this work we have employed the polymeric precursor (Pechini) method to prepare crystalline and amorphous YAP:Ce powders doped with 1-10 mol% Ce(3+). Interesting composite materials were also obtained by dispersing some of the YAP:Ce powders in silica xerogels. A comparative structural and spectroscopic study of all the samples was done by XRD, FT-IR, emission, excitation and excited state lifetime measurements. In agreement with previous reports, excitation at 296 nm results in intense emission in the range 315-425 nm with an average decay time of 30 ns. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work the neutron emission spectra from a graphite cube, and from natural uranium, lithium fluoride, graphite, lead and steel slabs bombarded with 14.1 MeV neutrons were measured to test nuclear data and calculational methods for D - T fusion reactor neutronics. The neutron spectra measured were performed by an organic scintillator using a pulse shape discrimination technique based on a charge comparison method to reject the gamma rays counts. A computer programme was used to analyse the experimental data by the differentiation unfolding method. The 14.1 MeV neutron source was obtained from T(d,n)4He reaction by the bombardment of T - Ti target with a deuteron beam of energy 130 KeV. The total neutron yield was monitored by the associated particle method using a silicon surface barrier detector. The numerical calculations were performed using the one-dimensional discrete-ordinate neutron transport code ANISN with the ZZ-FEWG 1/ 31-1F cross section library. A computer programme based on Gaussian smoothing function was used to smooth the calculated data and to match the experimental data. There was general agreement between measured and calculated spectra for the range of materials studied. The ANISN calculations carried out with P3 - S8 calculations together with representation of the slab assemblies by a hollow sphere with no reflection at the internal boundary were adequate to model the experimental data and hence it appears that the cross section set is satisfactory and for the materials tested needs no modification in the range 14.1 MeV to 2 MeV. Also it would be possible to carry out a study on fusion reactor blankets, using cylindrical geometry and including a series of concentric cylindrical shells to represent the torus wall, possible neutron converter and breeder regions, and reflector and shielding regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the angular distributions for elastic and. inelastic scattering of fast neutrons in fusion .reactor materials have been studied. Lithium and lead material are likely to be common components of fusion reactor wall configuration design. The measurements were performed using an associated particle time-of- flight technique. The 14 and 14.44 Mev neutrons were produced by the T(d,n} 4He reaction with deuterons being accelerated in a 150kev SAMES type J accelerator at ASTON and in.the 3. Mev DYNAMITRON at the Joint Radiation Centre, Birmingham respectively. The associated alpha-particles and fast. neutrons were detected.by means of a plastic scintillator mounted on a fast focused photomultiplier tube. The samples used were extended flat plates of thicknesses up to 0.9 mean-free-path for Lithium and 1.562 mean-free-path for Lead. The differential elastic scattering cross-sections were measured for 14 Mev neutrons for various thicknesses of Lithium and Lead in the angular range from zero to; 90º. In addition, the angular distributions of elastically scattered 14,.44 Mev .neutrons from Lithium samples were studied in the same angular range. Inelastic scattering to the 4.63 Mev state in 7Li and the 2.6 Mev state, and 4.1 Mev state in 208Pb have:been :measured.The results are compared to ENDF/B-IV data files and to previous measurements. For the Lead samples the differential neutron scattering:cross-sections for discrete 3 Mev ranges and the angular distributions were measured. The increase in effective cross-section due to multiple scattering effects,as the sample thickness increased:was found to be predicted by the empirical .relation ....... A good fit to the exoerimental data was obtained using the universal constant............ The differential elastic scattering cross-section data for thin samples of Lithium and Lead were analyzed in terms of optical model calculations using the. computer code. RAROMP. Parameter search procedures produced good fits to the·cross-sections. For the case of thick samples of Lithium and Lead, the measured angular distributions of :the scattered neutrons were compared to the predictions of the continuous slowing down model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present work attempts have been made to study the glass transition temperature of alternative mould materials by using both microwave heating and conventional oven heating. In this present work three epoxy resins, namely R2512, R2515 and R2516, which are commonly used for making injection moulds have been used in combination with two hardeners H2403 and H2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. In order to distinguish the effects between the microwave and conventional heating, a number of experiments were performed to test their mechanical properties such as tensile and flexural strengths. Additionally, differential scanning calorimeter technique was implemented to measure the glass transition temperature on both microwave and conventional heating. This study provided necessary evidences to establish that microwave heated mould materials resulted with higher glass transition temperature than the conventional heating. Finally, attempts were also made to study the microstructure of microwave-cured materials by using a scanning electron microscope in order to analyze the morphology of cured specimens.