1000 resultados para scattering geometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stereoscopic white-light imaging of a large portion of the inner heliosphere has been used to track interplanetary coronal mass ejections. At large elongations from the Sun, the white-light brightness depends on both the local electron density and the efficiency of the Thomson-scattering process. To quantify the effects of the Thomson-scattering geometry, we study an interplanetary shock using forward magnetohydrodynamic simulation and synthetic white-light imaging. Identifiable as an inclined streak of enhanced brightness in a time–elongation map, the travelling shock can be readily imaged by an observer located within a wide range of longitudes in the ecliptic. Different parts of the shock front contribute to the imaged brightness pattern viewed by observers at different longitudes. Moreover, even for an observer located at a fixed longitude, a different part of the shock front will contribute to the imaged brightness at any given time. The observed brightness within each imaging pixel results from a weighted integral along its corresponding ray-path. It is possible to infer the longitudinal location of the shock from the brightness pattern in an optical sky map, based on the east–west asymmetry in its brightness and degree of polarisation. Therefore, measurement of the interplanetary polarised brightness could significantly reduce the ambiguity in performing three-dimensional reconstruction of local electron density from white-light imaging.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on stacking fault (SF) detection in free-standing cubic-SiC epilayer by the Raman measurements. The epilayer with enhanced SFs is heteroepitaxially grown by low pressure chemical vapour deposition on a Si(100) substrate and is released in KOH solution by micromechanical manufacture, on which the Raman measurements are performed in a back scattering geometry. The TO line of the Raman spectra is considerably broadened and distorted. We discuss the influence of SFs on the intensity profiles of TO mode by comparing our experimental data with the simulated results based on the Raman bond polarizability (BP) model in the framework of linear-chain concept. Good agreement with respect to the linewidth and disorder-induced peak shift is found by assuming the mean distance of the SFs to be 11 angstrom in the BP model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Raman spectroscopic study on Oxyfluoro Vanadate glasses containing various proportions of lithium fluoride and rubidium fluoride was carried out to see an effect of mixture of alkali on vanadium-oxygen (V-O) bond length. Glasses with a general formula 40V(2)O(5) - 30BaF(2) - (30 - x) LiF - xRbF (x = 0-30) were prepared. Room temperature Raman spectra of these glass samples were recorded in back scattering geometry. The data presented is in ``reduced Raman intensity'' form with maximum peak scaled to 100. We have used v = Aexp(BR), where A and B are fitting parameters, to correlate the bond length R with Raman scattering frequency v. We observed that variation in bond length and its distribution about a most probable value can be correlated to the alkali environment present in these glasses. We also observed that all rubidium environment around the network forming unit is more homogenous than all lithium environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

用群论的方法计算了Nd:YbVO4晶体的拉曼活性振动模数目,在室温下测得了其极化拉曼谱线,并指认了在不同几何配置下,各振动模式所对应的频率。同时,测得了室温下晶体的吸收谱,得到了中心波长为808am吸收峰的半高宽为12nm,并在J-O理论的基础上计算了晶体的光学参数,其三个晶场参数分别为Ω2=6.88945×10^-20cm^2。Ω4=4.13394×10^-20cm^2、Ω6=4.54503×10^-20cm^2,并由此得到^4F3/2能级的荧光寿命为178.69炉,1062nm处的荧光分支比为48.85%,积分发射截面为2.786710^-18cm^2。分别在808nm、940nm激发下测得晶体室温发射谱,观察到了Nd→Yb以及Nd←Yb间的能量传递现象。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Raman measurements have been performed with the back-scattering geometry on the SiC films grown on Si(100) and sapphire (0001) by LPCVD. Typical TO and LO phonon peaks of 3C-SiC were observed for all the samples grown on Si and apphire substrates, indicating the epilayers are 3C-SiC polytype. Using a free-standing 3C-SiC film removed from Si(100) as a free-stress sample, the stresses of 3C-SiC on Si(100) and sapphire (0001) were estimated according to the shift of TO and LO phonons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel but simple time-of-flight neutron scattering geometry which allows structural anisotropy to be probed directly, simultaneously and thus unambiguously in polymeric and other materials is described. A particular advantage of the simultaneous data collection when coupled to the large area of the beam is that it enables thin films (< 10 μm < 10 mg) to be studied with relative ease. The utility of the technique is illustrated by studies on both deformed poly(styrene) glasses and on thin films of electrical conducting polymers. In the latter case, the power of isotopic substitution is illustrated to great effect. The development of these procedures for use in other areas of materials science is briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pre-resonant Raman effect of chromate ion, CrO2- 4, was observed in a metasilicate glass with molar composition 2Na2O · 1CaO · 3SiO2 containing 1.0 wt% of Cr2O3. Raman spectra were measured by the conventional 90° scattering geometry and by the microprobe Raman spectroscopic techniques. The presence of chromate ions in the glass is favoured by the glass composition and oxidizing conditions during the glass melting, and they are responsible for optical absorption bands at 370 and 250 nm. Raman spectrum of the undoped glass presents bands at 625, 860 and 980 cm-1, and the presence of chromate ions gives rise to additional bands at 365, 850 and a shoulder at 890 cm-1. An enhancement of the 850 cm-1 Raman band is observed with decreasing laser exciting wavelength. The exciting frequency dependence of the intensity of this band is discussed in terms of theoretical models given in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A procedure for the evaluation of multiple scattering contributions is described, for deep inelastic neutron scattering (DINS) studies using an inverse geometry time-of-flight spectrometer. The accuracy of a Monte Carlo code DINSMS, used to calculate the multiple scattering, is tested by comparison with analytic expressions and with experimental data collected from polythene, polycrystalline graphite and tin samples. It is shown that the Monte Carlo code gives an accurate representation of the measured data and can therefore be used to reliably correct DINS data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, beta(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D = I-2 omega,I-X,I-X/I-2 omega,I-Z,I-X and D' = I-2 omega,I-X,I-C/I-2 omega,I-Z,I-C in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, beta(HRS), and the value of macroscopic depolarization ratios, D and D', are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical beta(HRS), D and D' values as a function of the geometry of the complex. The calculated beta(HRS), D, and D' values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30 degrees is observed. Thus, we have demonstrated in this paper that the polarization resolved HRS technique along with theoretical calculations can unravel the geometry of CT complexes in solution. (C) 2011 American Institute of Physics. doi:10.1063/1.3514922]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extreme states of matter such as Warm Dense Matter “WDM” and Dense Strongly Coupled Plasmas “DSCP” play a key role in many high energy density experiments, however creating WDM and DSCP in a manner that can be quantified is not readily feasible. In this paper, isochoric heating of matter by intense heavy ion beams in spherical symmetry is investigated for WDM and DSCP research: The heating times are long (100 ns), the samples are macroscopically large (mm-size) and the symmetry is advantageous for diagnostic purposes. A dynamic confinement scheme in spherical symmetry is proposed which allows even ion beam heating times that are long on the hydrodynamic time scale of the target response. A particular selection of low Z-target tamper and x-ray probe radiation parameters allows to identify the x-ray scattering from the target material and use it for independent charge state measurements Z* of the material under study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper studies the selectivity of Well-defined Au and Ag nanostructures as substrates for the SERS, (surface-enhanced Raman scattering) detection of simazine (6-chloro-N,N`-diethyl-1,3,5-triazine-2,4-diamine) and atrazine (6-chloro-N-ethyl-N`-isopropyl-1,3,5-triazine-2,4-diamine). Our data showed that simazine and atrazine displayed similar SERS spectra when the Au was employed as substrate. Conversely, distinct SERS signatures were obtained upon the utilization of Ag substrates. Density functional theory (DFT) calculations and vibrational assignments suggested that, while simazine and atrazine adsorbed on Au via the N3 position of the triazine ring, simazine adsorbed on Ag via N3 and atrazine via N5. The results presented herein demonstrated that the adsorption geometry of analyte molecules can play a central role over substrate selectivity in SERS, which is particularly important in applications involving ultrasensitive analysis of mixtures containing structurally similar molecules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Geometric phases of scattering states in a ring geometry are studied on the basis of a variant of the adiabatic theorem. Three timescales, i.e., the adiabatic period, the system time and the dwell time, associated with adiabatic scattering in a ring geometry play a crucial role in determining geometric phases, in contrast to only two timescales, i.e., the adiabatic period and the dwell time, in an open system. We derive a formula connecting the gauge invariant geometric phases acquired by time-reversed scattering states and the circulating (pumping) current. A numerical calculation shows that the effect of the geometric phases is observable in a nanoscale electronic device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.