888 resultados para scatter search
Resumo:
In this paper, we consider a real-life heterogeneous fleet vehicle routing problem with time windows and split deliveries that occurs in a major Brazilian retail group. A single depot attends 519 stores of the group distributed in 11 Brazilian states. To find good solutions to this problem, we propose heuristics as initial solutions and a scatter search (SS) approach. Next, the produced solutions are compared with the routes actually covered by the company. Our results show that the total distribution cost can be reduced significantly when such methods are used. Experimental testing with benchmark instances is used to assess the merit of our proposed procedure. (C) 2008 Published by Elsevier B.V.
Resumo:
In this paper we present an algorithm to assign proctors toexams. This NP-hard problem is related to the generalized assignmentproblem with multiple objectives. The problem consists of assigningteaching assistants to proctor final exams at a university. We formulatethis problem as a multiobjective integer program (IP) with a preferencefunction and a workload-fairness function. We then consider also a weightedobjective that combines both functions. We develop a scatter searchprocedure and compare its outcome with solutions found by solving theIP model with CPLEX 6.5. Our test problems are real instances from aUniversity in Spain.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, to solve the reconfiguration problem of radial distribution systems a scatter search, which is a metaheuristic-based algorithm, is proposed. In the codification process of this algorithm a structure called node-depth representation is used. It then, via the operators and from the electrical power system point of view, results finding only radial topologies. In order to show the effectiveness, usefulness, and the efficiency of the proposed method, a commonly used test system, 135-bus, and a practical system, a part of Sao Paulo state's distribution network, 7052 bus, are conducted. Results confirm the efficiency of the proposed algorithm that can find high quality solutions satisfying all the physical and operational constraints of the problem.
Resumo:
Dissertation presented at Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia in fulfilment of the requirements for the Masters degree in Mathematics and Applications, specialization in Actuarial Sciences, Statistics and Operations Research
Resumo:
In today s highly competitive and global marketplace the pressure onorganizations to find new ways to create and deliver value to customersgrows ever stronger. In the last two decades, logistics and supply chainhas moved to the center stage. There has been a growing recognition thatit is through an effective management of the logistics function and thesupply chain that the goal of cost reduction and service enhancement canbe achieved. The key to success in Supply Chain Management (SCM) requireheavy emphasis on integration of activities, cooperation, coordination andinformation sharing throughout the entire supply chain, from suppliers tocustomers. To be able to respond to the challenge of integration there isthe need of sophisticated decision support systems based on powerfulmathematical models and solution techniques, together with the advancesin information and communication technologies. The industry and the academiahave become increasingly interested in SCM to be able to respond to theproblems and issues posed by the changes in the logistics and supply chain.We present a brief discussion on the important issues in SCM. We then arguethat metaheuristics can play an important role in solving complex supplychain related problems derived by the importance of designing and managingthe entire supply chain as a single entity. We will focus specially on theIterated Local Search, Tabu Search and Scatter Search as the ones, but notlimited to, with great potential to be used on solving the SCM relatedproblems. We will present briefly some successful applications.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Mass spectrometry (MS) data provide a promising strategy for biomarker discovery. For this purpose, the detection of relevant peakbins in MS data is currently under intense research. Data from mass spectrometry are challenging to analyze because of their high dimensionality and the generally low number of samples available. To tackle this problem, the scientific community is becoming increasingly interested in applying feature subset selection techniques based on specialized machine learning algorithms. In this paper, we present a performance comparison of some metaheuristics: best first (BF), genetic algorithm (GA), scatter search (SS) and variable neighborhood search (VNS). Up to now, all the algorithms, except for GA, have been first applied to detect relevant peakbins in MS data. All these metaheuristic searches are embedded in two different filter and wrapper schemes coupled with Naive Bayes and SVM classifiers.
Resumo:
We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.