995 resultados para scanning wafer stage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topography of a granite surface has an effect on the vertical positioning of a wafer stage in a lithographic tool, when the wafer stage moves on the granite. The inaccurate measurement of the topography results in a bad leveling and focusing performance. In this paper, an in situ method to measure the topography of a granite surface with high accuracy is present. In this method, a high-order polynomial is set up to express the topography of the granite surface. Two double-frequency laser interferometers are used to measure the tilts of the wafer stage in the X- and Y-directions. From the sampling tilts information, the coefficients of the high-order polynomial can be obtained by a special algorithm. Experiment results shows that the measurement reproducibility of the method is better than 10 nm. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

提出一种新的步进扫描投影光刻机工件台方镜不平度测量方法。以方镜平移补偿量与旋转补偿量为测量目标,使用两个双频激光干涉仪分别测量工件台在x和y方向的位置和旋转量;将方镜不平度的测量按照一定的偏移量分成若干个序列,每一个序列包括对方镜有效区域的若干次往返测量;根据所有序列的测量结果计算出方镜的旋转补偿量;为每一个序列建立临时边界条件,并据此计算出每一序列所测得的方镜粗略平移补偿量;采用三次样条插值与最小二乘法建立每一个序列间的关系,以平滑连接所有测量序列得到精确的方镜平移补偿量。结果表明,该方法用于测量方镜平

Relevância:

80.00% 80.00%

Publicador:

Resumo:

提出一种精确检测光刻机激光干涉仪测量系统非正交性的新方法。将对准标记曝光到硅片表面并进行显影;利用光学对准系统测量曝光到硅片上的对准标记理论曝光位置与实际读取位置的偏差;由推导的位置偏差与非正交因子、坐标轴尺度比例、过程引入误差的线性模型,根据最小二乘原理计算出干涉仪测量系统的非正交性。实验结果表明,利用该方法使用同一硅片在不同旋转角下进行测量,干涉仪测量系统非正交因子的测量重复精度优于0.01 μrad,坐标轴尺度比例的测量重复精度优于0.7×10-6。使用不同的硅片进行测量,非正交因子的测量再现性优于

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Langstaff, David; Chase, T., (2007) 'A multichannel detector array with 768 pixels developed for electron spectroscopy', Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 573(1-2) pp.169-171 RAE2008

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The subambient behavior of aqueous mannitol solutions is of considerable relevance to the preparation of freeze dried formulations. In this investigation the properties of 3% w/v mannitol solutions were investigated using differential scanning calorimetry (DSC), cold stage microscopy (CSM), and X-ray diffraction (XRD) to identify the thermal transitions and structural transformations undergone by this system. It was found that on cooling from ambient the system formed ice at circa -20°C while a further exotherm was seen at approximately -30°C. Upon reheating an endotherm was seen at circa -30°C followed immediately by an exotherm at circa -25°C. Temperature cycling indicated that the thermal transitions observed upon reheating were not reversible. Modulated temperature DSC (MTDSC) indicated that the transitions observed upon reheating corresponded to a glass transition immediately followed by recrystallization, XRD data showed that recrystallization was into the ß form. Annealing at -35°C for 40 min prior to cooling and reheating resulted in a maximum enthalpy being observed for the reheating exotherm. It is concluded that on cooling 3% w/v aqueous mannitol solutions an amorphous phase is formed that subsequently recrystallises into the ß form. The study has also shown that DSC, CSM, and XRD are useful complementary techniques for the study of frozen systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219°C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm-1 attributed to ν1 In-O symmetric stretching mode, bands at 1137 and 1155 cm-1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm-1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3 new Raman bands are observed at 125, 295, 488 and 615 cm-1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot stage Raman spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several research groups have attempted to optimize photopolymerization parameters to increase the throughput of scanning based microstereolithography (MSL) systems through modified beam scanning techniques. Efforts in reducing the curing line width have been implemented through high numerical aperture (NA) optical setups. However, the intensity contour symmetry and the depth of field of focus have led to grossly non-vertical and non-uniform curing profiles. This work tries to review the photopolymerization process in a scanning based MSL system from the aspect of material functionality and optical design. The focus has been to exploit the rich potential of photoreactor scanning system in achieving desired fabrication modalities (minimum curing width, uniform depth profile, and vertical curing profile) even with a reduced NA optical setup and a single movable stage. The present study tries to manipulate to its advantage the effect of optimized lower c] (photoinitiator (PI) concentration) in reducing the minimum curing width to similar to 10-20 mu m even with a higher spot size (similar to 21.36 mu m) through a judiciously chosen ``monomer-PI'' system. Optimization on grounds of increasing E-max (maximum laser exposure energy at surface) by optimizing the scan rate provides enough time for the monomer or resin to get cured across the entire resist thickness (surface to substrate similar to 10-100 mu m), leading to uniform depth profiles along the entire scan lengths. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4750975]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface micro-roughness, surface chemical properties, and surface wettability are three important aspects of wafer surfaces during a wafer cleaning process, which determine the bonding quality of ordinary direct wafer bonding. In this study, InP wafers are divided into four groups and treated by different chemical processes. Subsequently, the characteristics of the treated InP surfaces are carefully studied by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurements. The optimal wafer treatment method for wafer bonding is determined by comparing the results of the processes as a whole. This optimization is later evaluated by a scanning electronic microscope (SEM), and the ridge waveguide 1.55 mu m Si-based InP/InGaAsP multi-quantum-well laser chips are also fabricated. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphology of Gallium Nitride (GaN) in initial growth stage was observed with atomic force microscopy (AFM) and scanning electron microscopy (SEM), It was found that the epilayer developed from islands to coalesced film. Statistics based on AFM observation was carried out to investigate the morphology characteristics. It was found that the evolution of height distribution could be used to describe morphology development. Statistics also clearly revealed variation of top-face growth rate among islands. Indium-doping effect on morphology development was also statistically studied. The roughening and smoothing behavior in morphology development was explained. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defect engineering for SiO2] precipitation is investigated using He-ion implantation as the first stage of separation by implanted oxygen (STMOX). Cavities are created in Si by implantation with helium ions. After thermal annealing at different temperatures, the sample is implanted with 120keV 8.0 x 10(16) cm(-2) O ions. The O ion energy is chosen such that the peak of the concentration distribution is centred at the cavity band. For comparison, another sample is implanted with O ions alone. Cross-sectional transmission electron microscopy (XTEM), Fourier transform infrared absorbance spectrometry (FTIR) and atomic force microscopy (AFM) measurements are used to investigate the samples. The results show that a narrow nano-cavity layer is found to be excellent nucleation sites that effectively assisted SiO2 formation and released crystal lattice strain associated with silicon oxidation.