781 resultados para satellites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the concerted evolution of viral genomes in four families of DNA viruses. Given the high rate of horizontal gene transfer among viruses and their hosts, it is an open question as to how representative particular genes are of the evolutionary history of the complete genome. To address the concerted evolution of viral genes, we compared genomic evolution across four distinct, extant viral families. For all four viral families we constructed DNA-dependent DNA polymerase-based (DdDp) phylogenies and in addition, whole genome sequence, as quantitative descriptions of inter-genome relationships. We found that the history of the polymerase gene was highly predictive of the history of the genome as a whole, which we explain in terms of repeated, co-divergence events of the core DdDp gene accompanied by a number of satellite, accessory genetic loci. We also found that the rate of gene gain in baculovirus and poxviruses proceeds significantly more quickly than the rate of gene loss and that there is convergent acquisition of satellite functions promoting contextual adaptation when distinct viral families infect related hosts. The congruence of the genome and polymerase trees suggests that a large set of viral genes, including polymerase, derive from a phylogenetically conserved core of genes of host origin, secondarily reinforced by gene acquisition from common hosts or co-infecting viruses within the host. A single viral genome can be thought of as a mutualistic network, with the core genes acting as an effective host and the satellite genes as effective symbionts. Larger virus genomes show a greater departure from linkage equilibrium between core and satellites functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stalker (AIAA Paper 87-0403) has suggested that, by ejecting molecules directly upstream from the entire face of a satellite, it is possible to reduce the drag on a satellite in low-Earth orbit and hence maintain orbit with a total fuel mass (for forward ejection and conventional reaction rockets) less than the typical mass requirements of conventional rockets. An analytical analysis is presented here, as well as Monte Carlo simulations. These indicate that to reduce the overall drag on the satellite significantly, collisions between the freestream and ejected molecules must occur at least two satellite diameters upstream. This can be achieved if the molecules are ejected far upstream from the satellite’s surface through a sting that projects forward from the satellite. Using some estimates of what would be feasible sting arrangements, we find that the drag on the satellite can be reduced to such an extent that the satellite’s orbit can be maintained with a total fuel mass of less than 60% of that required for reaction rockets alone. Upstream ejection is effective in reducing the drag for freestream Knudsen numbers less than approximately 250, but not otherwise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time it was possible to observe regular quasiperiodic scintillations (QPS) in VHF radio-satellite transmissions from orbiting satellites simultaneously at short (2.1 km) and long (121 km) meridional baselines in the vicinity of a typical mid-latitude station (Brisbane; 27.5degreesS and 152.9degreesE geog. and 35.6degrees invar.lat.), using three sites (St. Lucia-S, Taringa-T in Brisbane and Boreen Pt.-B, north of Brisbane). A few pronounced quasiperiodic (QP) events were recorded showing unambiguous regular structures at the sites which made it possible to deduce a time displacement of the regular fading minimum at S, T and B. The QP structure is highly dependent on the geometry of the ray-path from a satellite to the observer which is manifested as a change of a QP event from symmetrical to non-symmetrical for stations separated by 2.1 km, and to a radical change in the structure of the event over a distance of 121 km. It is suggested the short-duration intense QP events are due to a Fresnel diffraction (or a reflection mechanism) of radio-satellite signals by a single ionospheric irregularity in a form of an ellipsoid with a large ionization gradient along the major axis. The structure of a QP event depends on the angle of viewing of the irregular blob from a radio-satellite. In view of this it is suggested that the reported variety of the ionization formation, responsible for different types of QPS, is only apparent but not real. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn at the German Aerospace Center (DLR) , Germany, during June and July 2006. The main objective of the two months stay has been to apply the techniques of LEO (Low Earth Orbiters) satellites GPS navigation which DLR currently uses in real time navigation. These techniques comprise the use of a dynamical model which takes into account the precise earth gravity field and models to account for the effects which perturb the LEO’s motion (such as drag forces due to earth’s atmosphere, solar pressure, due to the solar radiation impacting on the spacecraft, luni-solar gravity, due to the perturbation of the gravity field for the sun and moon attraction, and tidal forces, due to the ocean and solid tides). A high parameterized software was produced in the first part of work, which has been used to asses which accuracy could be reached exploring different models and complexities. The objective was to study the accuracy vs complexity, taking into account that LEOs at different heights have different behaviors. In this frame, several LEOs have been selected in a wide range of altitudes, and several approaches with different complexity have been chosen. Complexity is a very important issue, because processors onboard spacecrafts have very limited computing and memory resources, so it is mandatory to keep the algorithms simple enough to let the satellite process it by itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grâce à des développements technologiques récents, tels que le système de positionnement par satellites GPS (Global Positioning System) en mode différentie on est maintenant capable de mesurer avec une grande précision non seulement le profil de vitesse de déplacement d'un sujet sur la terre mais aussi sa trajectoire en faisant totalement abstraction de la chronométrie classique. De plus, des capteurs accélérométriques miniaturisés permettent d'obtenir un complément d'information biomécanique utile (fréquence et longueur du pas, signature accélérométrique individuelle). Dans cet artide, un exemple d'application de ces deux techniques à des sports tels que le ski alpin (descente ou Super G) et le sprint est présenté. La combinaison de plusieurs mesures physiologiques, cinétiques et biomécaniques permettra de mieux comprendre les facteurs endogènes et exogènes qui jouent un rôle dans l'amélioration des performances de l'homme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate variability in the African Soudano-Sahel savanna zone has attracted much attention because of the persistence of anomalously low rainfall. Past efforts to monitor the climate of this region have focused on rainfall and vegetation conditions, while land surface temperature (LST) has received less attention. Remote sensing of LST is feasible and possible at global scale. Most remotely sensed estimates of LST are based on the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) that are limited in their ability to capture the full diurnal cycle. Although more frequent observations are available from past geostationary satellites, their spatial resolution is coarser than that of polar orbiting satellites. In this study, the improved capabilities of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the METEOSAT Second Generation (MSG) instrument are used to remotely sense the LST in the African Soudano-Sahel savanna zone at a resolution of 3 km and 15 minutes. In support of the Radiative Atmospheric Divergence using the ARM Mobile Facility (AMF), GERB and AMMA Stations (RADAGAST) project, African Monsoon Multidisciplinary Analyses (AMMA) project and the Department of Energy's Atmospheric Radiation Measurement (ARM) program, the ARM Mobile Facility was deployed during 2006 in this climatically sensitive region, thereby providing a unique opportunity to evaluate remotely sensed algorithms for deriving LST.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Soil Moisture and Ocean Salinity (SMOS) satellite marks the commencement of dedicated global surface soil moisture missions, and the first mission to make passive microwave observations at L-band. On-orbit calibration is an essential part of the instrument calibration strategy, but on-board beam-filling targets are not practical for such large apertures. Therefore, areas to serve as vicarious calibration targets need to be identified. Such sites can only be identified through field experiments including both in situ and airborne measurements. For this purpose, two field experiments were performed in central Australia. Three areas are studied as follows: 1) Lake Eyre, a typically dry salt lake; 2) Wirrangula Hill, with sparse vegetation and a dense cover of surface rock; and 3) Simpson Desert, characterized by dry sand dunes. Of those sites, only Wirrangula Hill and the Simpson Desert are found to be potentially suitable targets, as they have a spatial variation in brightness temperatures of <4 K under normal conditions. However, some limitations are observed for the Simpson Desert, where a bias of 15 K in vertical and 20 K in horizontal polarization exists between model predictions and observations, suggesting a lack of understanding of the underlying physics in this environment. Subsequent comparison with model predictions indicates a SMOS bias of 5 K in vertical and 11 K in horizontal polarization, and an unbiased root mean square difference of 10 K in both polarizations for Wirrangula Hill. Most importantly, the SMOS observations show that the brightness temperature evolution is dominated by regular seasonal patterns and that precipitation events have only little impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) has generated sea surface temperature (SST) products from Geostationary Operational Environmental Satellite (GOES)-East (E) and GOES-West (W) on an operational basis since December 2000. Since that time, a process of continual development has produced steady improvements in product accuracy. Recent improvements extended the capability to permit generation of operational SST retrievals from the Japanese Multifunction Transport Satellite (MTSAT)-1R and the European Meteosat Second Generation (MSG) satellite, thereby extending spatial coverage. The four geostationary satellites (at longitudes of 75°W, 135°W, 140°E, and 0°) provide high temporal SST retrievals for most of the tropics and midlatitudes, with the exception of a region between 60° and 80°E. Because of ongoing development, the quality of these retrievals now approaches that of SST products from the polar-orbiting Advanced Very High Resolution Radiometer (AVHRR). These products from GOES provide hourly regional imagery, 3-hourly hemispheric imagery, 24-h merged composites, a GOES SST level 2 preprocessed product every 1/2 h for each hemisphere, and a match-up data file for each product. The MTSAT and the MSG products include hourly, 3-hourly, and 24-h merged composites. These products provide the user community with a reliable source of SST observations, with improved accuracy and increased coverage in important oceanographic, meteorological, and climatic regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report is a review of Darwin`s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In terms of stability around the primary, it is widely known that the semimajor axis of the retrograde satellites is much larger than the corresponding semimajor axis of the prograde satellites. Usually this conclusion is obtained numerically, since precise analytical derivation is far from being easy, especially, in the case of two or more disturbers. Following the seminal idea that what is unstable in the restricted three-body problem is also unstable in the general N-body problem, we present a simplified model which allows us to derive interesting resonant configurations. These configurations are responsible for cumulative perturbations which can give birth to strong instability that may cause the ejection of the satellite. Then we obtain, analytically, approximate bounds of the stability of prograde and retrograde satellites. Although we recover quite well previous results of other authors, we comment very briefly some weakness of these bounds. Copyright (c) 2008 Tadashi Yokoyama et al.