994 resultados para same-beam
Resumo:
The same-beam VLBI observations of Rstar and Vstar, which were two small satellites of Japanese lunar mission, SELENE, were successfully performed by using Shanghai and Urumqi 25-m telescopes. When the separation angle between Rstar and Vstar was less than 0.1 deg, the differential phase delay of the X-band signals between Rstar and Vstar on Shanghai-Urumqi baseline was obtained with a very small error of 0.15 mm rms, which was reduced by 1-2 order compared with the former VLBI results. When the separation angle was less than 0.56 deg, the differential phase delay of the S-band signals was also obtained with a very small error of several mm rms. The orbit determination for Rstar and Vstar was performed, and the accuracy was improved to a level of several meters by using VLBI and Doppler data. The high-accuracy same-beam differential VLBI technique is very useful in orbit determination for a spacecraft, and will be used in orbit determination for Mars missions of China Yinghuo-1 and Russia Phobos-grunt.
Resumo:
Introduction Given the known challenges of obtaining accurate measurements of small radiation fields, and the increasing use of small field segments in IMRT beams, this study examined the possible effects of referencing inaccurate field output factors in the planning of IMRT treatments. Methods This study used the Brainlab iPlan treatment planning system to devise IMRT treatment plans for delivery using the Brainlab m3 microMLC (Brainlab, Feldkirchen, Germany). Four pairs of sample IMRT treatments were planned using volumes, beams and prescriptions that were based on a set of test plans described in AAPM TG 119’s recommendations for the commissioning of IMRT treatment planning systems [1]: • C1, a set of three 4 cm volumes with different prescription doses, was modified to reduce the size of the PTV to 2 cm across and to include an OAR dose constraint for one of the other volumes. • C2, a prostate treatment, was planned as described by the TG 119 report [1]. • C3, a head-and-neck treatment with a PTV larger than 10 cm across, was excluded from the study. • C4, an 8 cm long C-shaped PTV surrounding a cylindrical OAR, was planned as described in the TG 119 report [1] and then replanned with the length of the PTV reduced to 4 cm. Both plans in each pair used the same beam angles, collimator angles, dose reference points, prescriptions and constraints. However, one of each pair of plans had its beam modulation optimisation and dose calculation completed with reference to existing iPlan beam data and the other had its beam modulation optimisation and dose calculation completed with reference to revised beam data. The beam data revisions consisted of increasing the field output factor for a 0.6 9 0.6 cm2 field by 17 % and increasing the field output factor for a 1.2 9 1.2 cm2 field by 3 %. Results The use of different beam data resulted in different optimisation results with different microMLC apertures and segment weightings between the two plans for each treatment, which led to large differences (up to 30 % with an average of 5 %) between reference point doses in each pair of plans. These point dose differences are more indicative of the modulation of the plans than of any clinically relevant changes to the overall PTV or OAR doses. By contrast, the maximum, minimum and mean doses to the PTVs and OARs were smaller (less than 1 %, for all beams in three out of four pairs of treatment plans) but are more clinically important. Of the four test cases, only the shortened (4 cm) version of TG 119’s C4 plan showed substantial differences between the overall doses calculated in the volumes of interest using the different sets of beam data and thereby suggested that treatment doses could be affected by changes to small field output factors. An analysis of the complexity of this pair of plans, using Crowe et al.’s TADA code [2], indicated that iPlan’s optimiser had produced IMRT segments comprised of larger numbers of small microMLC leaf separations than in the other three test cases. Conclusion: The use of altered small field output factors can result in substantially altered doses when large numbers of small leaf apertures are used to modulate the beams, even when treating relatively large volumes.
Resumo:
We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilises direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially non-homogenous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.
Resumo:
An analytical formula for the cross-spectral density matrix of the electric field of anisotropic electromagnetic Gaussian-Schell model beams propagating in free space is derived by using a tensor method. The effects of coherence on those beams are studied. It is shown that two anisotropic stochastic electromagnetic beams that propagate from the source plane z = 0 into the half-space z > 0 may have different beam shapes (i.e., spectral density) and states of polarization in the half-space, even though they have the same beam shape and states of polarization in the source plane. This fact is due to a difference in the coherence properties of the field in the source plane. (C) 2007 Optical Society of America.
Resumo:
The goal of this research is to provide a framework for vibro-acoustical analysis and design of a multiple-layer constrained damping structure. The existing research on damping and viscoelastic damping mechanism is limited to the following four mainstream approaches: modeling techniques of damping treatments/materials; control through the electrical-mechanical effect using the piezoelectric layer; optimization by adjusting the parameters of the structure to meet the design requirements; and identification of the damping material’s properties through the response of the structure. This research proposes a systematic design methodology for the multiple-layer constrained damping beam giving consideration to vibro-acoustics. A modeling technique to study the vibro-acoustics of multiple-layered viscoelastic laminated beams using the Biot damping model is presented using a hybrid numerical model. The boundary element method (BEM) is used to model the acoustical cavity whereas the Finite Element Method (FEM) is the basis for vibration analysis of the multiple-layered beam structure. Through the proposed procedure, the analysis can easily be extended to other complex geometry with arbitrary boundary conditions. The nonlinear behavior of viscoelastic damping materials is represented by the Biot damping model taking into account the effects of frequency, temperature and different damping materials for individual layers. A curve-fitting procedure used to obtain the Biot constants for different damping materials for each temperature is explained. The results from structural vibration analysis for selected beams agree with published closed-form results and results for the radiated noise for a sample beam structure obtained using a commercial BEM software is compared with the acoustical results of the same beam with using the Biot damping model. The extension of the Biot damping model is demonstrated to study MDOF (Multiple Degrees of Freedom) dynamics equations of a discrete system in order to introduce different types of viscoelastic damping materials. The mechanical properties of viscoelastic damping materials such as shear modulus and loss factor change with respect to different ambient temperatures and frequencies. The application of multiple-layer treatment increases the damping characteristic of the structure significantly and thus helps to attenuate the vibration and noise for a broad range of frequency and temperature. The main contributions of this dissertation include the following three major tasks: 1) Study of the viscoelastic damping mechanism and the dynamics equation of a multilayer damped system incorporating the Biot damping model. 2) Building the Finite Element Method (FEM) model of the multiple-layer constrained viscoelastic damping beam and conducting the vibration analysis. 3) Extending the vibration problem to the Boundary Element Method (BEM) based acoustical problem and comparing the results with commercial simulation software.
Resumo:
The efficiency with which a small beam trawl (1 x 0.5 m mouth) sampled postlarvae and juveniles of tiger prawns Penaeus esculentus and P, semisulcatus at night was estimated in 3 tropical seagrass communities (dominated by Thalassia hemprichii, Syringodium isoetifolium and Enhalus acoroides, respectively) in the shallow waters of the Gulf of Carpentaria in northern Australia. An area of seagrass (40 x 3 m) was enclosed by a net and the beam trawl was repeatedly hand-hauled over the substrate. Net efficiency (q) was calculated using 4 methods: the unweighted Leslie, weighted Leslie, DeLury and Maximum-likelihood (ML) methods. The Maximum-likelihood is the preferred method for estimating efficiency because it makes the fewest assumptions and is not affected by zero catches. The major difference in net efficiencies was between postlarvae (mean ML q +/- 95% confidence limits = 0.66 +/- 0.16) and juveniles of both species (mean q for juveniles in water less than or equal to 1.0 m deep = 0.47 +/- 0.05), i.e. the beam trawl was more efficient at capturing postlarvae than juveniles. There was little difference in net efficiency for P, esculentus between seagrass types (T, hemprichii versus S. isoetifolium), even though the biomass and morphologies of seagrass in these communities differed greatly (biomasses were 54 and 204 g m(-2), respectively). The efficiency of the net appeared to be the same for juveniles of the 2 species in shallow water, but was lower for juvenile P, semisulcatus at high tide when the water was deeper (1.6 to 1.9 m) (0.35 +/- 0.08). The lower efficiency near the time of high tide is possibly because the prawns are more active at high than low tide, and can also escape above the net. Factors affecting net efficiency and alternative methods of estimating net efficiency are discussed.
Resumo:
We study small vibrations of cantilever beams contacting a rigid surface. We study two cases: the first is a beam that sags onto the ground due to gravity, and the second is a beam that sticks to the ground through reversible adhesion. In both cases, the noncontacting length varies dynamically. We first obtain the governing equations and boundary conditions, including a transversality condition involving an end moment, using Hamilton's principle. Rescaling the variable length to a constant value, we obtain partial differential equations with time varying coefficients, which, upon linearization, give the natural frequencies of vibration. The natural frequencies for the first case (gravity without adhesion) match that of a clamped-clamped beam of the same nominal length; frequencies for the second case, however, show no such match. We develop simple, if atypical, single degree of freedom approximations for the first modes of these two systems, which provide insights into the role of the static deflection profile, as well as the end moment condition, in determining the first natural frequencies of these systems. Finally, we consider small transverse sinusoidal forcing of the first case and find that the governing equation contains both parametric and external forcing terms. For forcing at resonance, w find that either the internal or the external forcing may dominate.
Resumo:
In this paper, we consider the optimization of the cross-section profile of a cantilever beam under deformation-dependent loads. Such loads are encountered in plants and trees, cereal crop plants such as wheat and corn in particular. The wind loads acting on the grain-bearing spike of a wheat stalk vary with the orientation of the spike as the stalk bends; this bending and the ensuing change in orientation depend on the deformation of the plant under the same load.The uprooting of the wheat stalks under wind loads is an unresolved problem in genetically modified dwarf wheat stalks. Although it was thought that the dwarf varieties would acquire increased resistance to uprooting, it was found that the dwarf wheat plants selectively decreased the Young's modulus in order to be compliant. The motivation of this study is to investigate why wheat plants prefer compliant stems. We analyze this by seeking an optimal shape of the wheat plant's stem, which is modeled as a cantilever beam, by taking the large deflection of the stem into account with the help of co-rotational finite element beam modeling. The criteria considered here include minimum moment at the fixed ground support, adequate stiffness and strength, and the volume of material. The result reported here is an example of flexibility, rather than stiffness, leading to increased strength.
Resumo:
Boron neutron capture therapy (BNCT) is a form of chemically targeted radiotherapy that utilises the high neutron capture cross-section of boron-10 isotope to achieve a preferential dose increase in the tumour. The BNCT dosimetry poses a special challenge as the radiation dose absorbed by the irradiated tissues consists of several dose different components. Dosimetry is important as the effect of the radiation on the tissue is correlated with the radiation dose. Consistent and reliable radiation dose delivery and dosimetry are thus basic requirements for radiotherapy. The international recommendations for are not directly applicable to BNCT dosimetry. The existing dosimetry guidance for BNCT provides recommendations but also calls for investigating for complementary methods for comparison and improved accuracy. In this thesis the quality assurance and stability measurements of the neutron beam monitors used in dose delivery are presented. The beam monitors were found not to be affected by the presence of a phantom in the beam and that the effect of the reactor core power distribution was less than 1%. The weekly stability test with activation detectors has been generally reproducible within the recommended tolerance value of 2%. An established toolkit for epithermal neutron beams for determination of the dose components is presented and applied in an international dosimetric intercomparison. The measured quantities (neutron flux, fast neutron and photon dose) by the groups in the intercomparison were generally in agreement within the stated uncertainties. However, the uncertainties were large, ranging from 3-30% (1 standard deviation), emphasising the importance of dosimetric intercomparisons if clinical data is to be compared between different centers. Measurements with the Exradin type 2M ionisation chamber have been repeated in the epithermal neutron beam in the same measurement configuration over the course of 10 years. The presented results exclude severe sensitivity changes to thermal neutrons that have been reported for this type of chamber. Microdosimetry and polymer gel dosimetry as complementary methods for epithermal neutron beam dosimetry are studied. For microdosimetry the comparison of results with ionisation chambers and computer simulation showed that the photon dose measured with microdosimetry was lower than with the two other methods. The disagreement was within the uncertainties. For neutron dose the simulation and microdosimetry results agreed within 10% while the ionisation chamber technique gave 10-30% lower neutron dose rates than the two other methods. The response of the BANG-3 gel was found to be linear for both photon and epithermal neutron beam irradiation. The dose distribution normalised to dose maximum measured by MAGIC polymer gel was found to agree well with the simulated result near the dose maximum while the spatial difference between measured and simulated 30% isodose line was more than 1 cm. In both the BANG-3 and MAGIC gel studies, the interpretation of the results was complicated by the presence of high-LET radiation.
Resumo:
We report the effect of dual beam excitation on the photoluminescence (PL) from PbS quantum dots in polyvinyl alcohol by using two excitation lasers, namely Ar+ (514.5 nm) and He-Ne laser (670 nm). Both sources of excitation gave similar PL spectra around 1.67 eV (related to shallow traps) and 1.1 eV (related to deep traps). When both lasers were used at the same time, we found that the PL induced by each of the lasers was partly quenched by the illumination of the other laser. The proposed mechanism of this quenching effect involves traps that are populated by one specific laser excitation, being photo-ionized by the presence of the other laser. Temperature, laser intensity and modulation frequency dependent quenching efficiencies are presented in this paper. This reversible modulation has potential for optical switching and memory device applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the present study singular fractal functions (SFF) were used to generate stress-strain plots for quasibrittle material like concrete and cement mortar and subsequently stress-strain plot of cement mortar obtained using SFF was used for modeling fracture process in concrete. The fracture surface of concrete is rough and irregular. The fracture surface of concrete is affected by the concrete's microstructure that is influenced by water cement ratio, grade of cement and type of aggregate 11-41. Also the macrostructural properties such as the size and shape of the specimen, the initial notch length and the rate of loading contribute to the shape of the fracture surface of concrete. It is known that concrete is a heterogeneous and quasi-brittle material containing micro-defects and its mechanical properties strongly relate to the presence of micro-pores and micro-cracks in concrete 11-41. The damage in concrete is believed to be mainly due to initiation and development of micro-defects with irregularity and fractal characteristics. However, repeated observations at various magnifications also reveal a variety of additional structures that fall between the `micro' and the `macro' and have not yet been described satisfactorily in a systematic manner [1-11,15-17]. The concept of singular fractal functions by Mosolov was used to generate stress-strain plot of cement concrete, cement mortar and subsequently the stress-strain plot of cement mortar was used in two-dimensional lattice model [28]. A two-dimensional lattice model was used to study concrete fracture by considering softening of matrix (cement mortar). The results obtained from simulations with lattice model show softening behavior of concrete and fairly agrees with the experimental results. The number of fractured elements are compared with the acoustic emission (AE) hits. The trend in the cumulative fractured beam elements in the lattice fracture simulation reasonably reflected the trend in the recorded AE measurements. In other words, the pattern in which AE hits were distributed around the notch has the same trend as that of the fractured elements around the notch which is in support of lattice model. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In the immediate surroundings of our daily life, we can find a lot of places where the energy in the form of vibration is being wasted. Therefore, we have enormous opportunities to utilize the same. Piezoelectric character of matter enables us to convert this mechanical vibration energy into electrical energy which can be stored and used to power other device, instead of being wasted. This work is done to realize both actuator and sensor in a cantilever beam based on piezoelectricity. The sensor part is called vibration energy harvester. The numerical analyses were performed for the cantilever beam using the commercial package ANSYS and MATLAB. The cantilever beam is realized by taking a plate and fixing its one end between two massive plates. Two PZT patches were glued to the beam on its two faces. Experiments were performed using data acquisition system (DAQ) and LABVIEW software for actuating and sensing the vibration of the cantilever beam.
Resumo:
Low-power requirements of contemporary sensing technology attract research on alternate power sources that can replace batteries. Energy harvesters absorb ambient energy and function as power sources for sensors and other low-power devices. Piezoelectric bimorphs have been demonstrating the preeminence in converting the mechanical energy in ambient vibrations into electrical energy. Improving the performance of these harvesters is pivotal as the energy in ambient vibrations is innately low. In this paper, we focus on enhancing the performance of piezoelectric harvesters through a multilayer and, in particular, a multistep configuration. Partial coverage of piezoelectric material in steps along the length of a cantilever beam results in a multistep piezoelectric energy harvester. We also discuss obtaining an approximate deformation curve for the beam with multiple steps in a computationally efficient manner. We find that the power generated by a multistep beam is almost 90% more than that by a multilayer harvester made out of the same volume of polyvinylidinefluoride ( PVDF), further corroborated experimentally. Improvements observed in the power generated prove to be a boon for weakly coupled low profile piezoelectric materials. Thus, in spite of the weak piezoelectric coupling observed in PVDF, its energy harvesting capability can be improved significantly using it in a multistep piezoelectric beam configuration.