952 resultados para saddle point conditions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article deals with a vector optimization problem with cone constraints in a Banach space setting. By making use of a real-valued Lagrangian and the concept of generalized subconvex-like functions, weakly efficient solutions are characterized through saddle point type conditions. The results, jointly with the notion of generalized Hessian (introduced in [Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28, 789–809 (1990)]), are applied to achieve second order necessary and sufficient optimality conditions (without requiring twice differentiability for the objective and constraining functions) for the particular case when the functionals involved are defined on a general Banach space into finite dimensional ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the application of the conjugate gradient method to the solution of large, symmetric indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerical experiments validate these conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider conjugate-gradient like methods for solving block symmetric indefinite linear systems that arise from saddle-point problems or, in particular, regularizations thereof. Such methods require preconditioners that preserve certain sub-blocks from the original systems but allow considerable flexibility for the remaining blocks. We construct a number of families of implicit factorizations that are capable of reproducing the required sub-blocks and (some) of the remainder. These generalize known implicit factorizations for the unregularized case. Improved eigenvalue clustering is possible if additionally some of the noncrucial blocks are reproduced. Numerical experiments confirm that these implicit-factorization preconditioners can be very effective in practice.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we consider the problem of solving large and sparse linear systems of saddle point type stemming from optimization problems. The focus of the thesis is on iterative methods, and new preconditioning srategies are proposed, along with novel spectral estimtates for the matrices involved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study a zero sum differential game of mixed type where each player uses both control and stopping times. Under certain conditions we show that the value function for this problem exists and is the unique viscosity solution of the corresponding variational inequalities. We also show the existence of saddle point equilibrium for a special case of differential game.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

All the second-order boundary-layer effects have been studied for the steady laminar compressible 3-dimensional stagnation-point flows with variable properties and mass transfer for both saddle and nodal point regions. The governing equations have been solved numerically using an implicit finite-difference scheme. Results for the heat transfer and skin friction have been obtained for several values of the mass-transfer rate, wall temperature, and also for several values of parameters characterizing the nature of stagnation point and variable gas properties. The second-order effects on the heat transfer and skin friction at the wall are found to be significant and at large injection rates, they dominate over the results of the first-order boundary layer, but the effect of large suction is just the opposite. In general, the second-order effects are more pronounced in the saddle-point region than in the nodal-point region. The overall heat-transfer rate for the 3-dimensional flows is found to be more than that of the 2-dimensional flows.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A semi-similar solution of an unsteady laminar compressible three-dimensional stagnation point boundary layer flow with massive blowing has been obtained when the free stream velocity varies arbitrarily with time. The resulting partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme with a quasi-linearization technique in the nodal point region and an implicit finite-difference scheme with a parametric differentiation technique in the saddle point region. The results have been obtained for two particular unsteady free stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. Results show that the skin-friction and heat-transfer parameters respond significantly to the time dependent arbitrary free stream velocity. Velocity and enthalpy profiles approach their free stream values faster as time increases. There is a reverse flow in the y-wise velocity profile, and overshoot in the x-wise velocity and enthalpy profiles in the saddle point region, which increase as injection and wall temperature increase. Location of the dividing streamline increases as injection increases, but as the wall temperature and time increase, it decreases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The unsteadely laminar incompressible second-order boundary-layer flow at the stagnation point of a three-dimensional body has been studied for both nodal and saddle point regions. The effects of mass transfer and Prandtl number have been taken into account. The equations governing the flow have been solved numerically using an implicit finite-difference scheme. It has been found that the parameter characterizing the unsteadiness in the velocity of the free stream, the nature of the stagnation point, the mass transfer and Prandtl number strongly affect the second-order skin friction and heat transfer. The overall skin friction becomes less due to second-order effects but the heat transfer has the opposite behaviour. For large injection, the second-order skin-friction and heat-transfer results prevail over the first-order boundary layer results whereas for the case of large suction the behaviour is just the opposite.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The unsteady laminar compressible three-dimensional stagnation-point boundary-layer flow with variable properties has been studied when the velocity of the incident stream, mass transfer and wall temperature vary arbitrarily with time. The second-order unsteady boundary-layer equations for all the effects have been derived by using the method of matched asymptotic expansions. Both nodal and saddle point flows as well as cold and hot wall cases have been considered. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for an accelerating stream, a decelerating stream and a fluctuating stream. The results indicate that the unsteady free stream velocity distributions, the nature of the stagnation point, the mass transfer, the wall temperature and the variation of the density-viscosity product across the boundary significantly affect the skin friction and heat transfer. The variation of the wall temperature with time strongly affects the heat transfer whereas its effect is comparatively less on skin friction. Suction increases the skin friction and heat transfer but injection does the opposite. The skin friction in the x direction due to the combined effects of first- and second-order boundary layers is less than the skin-friction in the x direction due to the first-order boundary layers for all the parameters. The overall skin friction in the z direction and heat transfer are more or less than the first-order boundary layers depending upon the values of the various parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

All the second-order boundary-layer effects have been studied for the steady laminar compressible 3-dimensional stagnation-point flows with variable properties and mass transfer for both saddle and nodal point regions. The governing equations have been solved numerically using an implicit finite-difference scheme. Results for the heat transfer and skin friction have been obtained for several values of the mass-transfer rate, wall temperature, and also for several values of parameters characterizing the nature of stagnation point and variable gas properties. The second-order effects on the heat transfer and skin friction at the wall are found to be significant and at large injection rates, they dominate over the results of the first-order boundary layer, but the effect of large suction is just the opposite. In general, the second-order effects are more pronounced in the saddle-point region than in the nodal-point region. The overall heat-transfer rate for the 3-dimensional flows is found to be more than that of the 2-dimensional flows.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

All the second-order boundary-layer effects on the unsteady laminar incompressible flow at the stagnation-point of a three-dimensional body for both nodal and saddle point regions have been studied. It has been assumed that the free-stream velocity, wall temperature and mass transfer vary arbitrarily with time. The effect of the Prandtl number has been taken into account. The partial differential equations governing the flow have been derived for the first time and then solved numerically unsteady free-stream velocity distributions, the nature of the using an implicit finite-difference scheme. It is found that the stagnation point and the mass transfer strongly affect the skin friction and heat transfer whereas the effects of the Prandtl number and the variation of the wall temperature with time are only on the heat transfer. The skin friction due to the combined effects of first- and second-order boundary layers is less than the skin friction due to, the first-order boundary layers whereas the heat transfer has the opposite behaviour. Suction increases the skin friction and heat transfer but injection does the opposite

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The unsteady three-dimensional stagnation point Bow of a viscoelastic fluid has been studied. Both nodal and saddle point regions of How have been considered. The unsteadiness in the Bow field is caused by the free stream velocity which varies arbitrarily with time. The governing boundary layer equations represented by a system of nonlinear partial differential equations have been solved numerically using a finite-difference scheme along with the quasilinearization technique in the nodal point region and a finite-difference scheme in combination with the parametric differentiation technique in the saddle point region. The skin friction coefficients for the viscoelastic fluid are found to be significantly less than those of the Newtonian fluid. The skin friction and heat transfer increase due to suction and reduce due to injection. The heat transfer at the wall increases with the Prandtl number. There is a flow reversal in the y-component of the velocity in the saddle point region. The absolute value of c (<<<0) for which reversal takes place is less than that of the Newtonian fluid. (C) 1997 Elsevier Science Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we propose a multiple resource interaction model in a game-theoretical framework to solve resource allocation problems in theater level military campaigns. An air raid campaign using SEAD aircraft and bombers against an enemy target defended by air defense units is considered as the basic platform. Conditions for the existence of saddle point in pure strategies is proved and explicit feedback strategies are obtained for a simplified model with linear attrition function limited by resource availability. An illustrative example demonstrates the key features.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The steady bifurcation flows in a spherical gap (gap ratio sigma=0.18) with rotating inner and stationary outer spheres are simulated numerically for Re(c1)less than or equal to Re less than or equal to 1 500 by solving steady axisymmetric incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist two steady stable flows with 1 or 2 vortices per hemisphere for 775 less than or equal to Re less than or equal to 1 220 and three steady stable flows with 0, 1, or 2 vortices for 1 220conditions which on be generated by different accelerations of the inner sphere. Generation of zero-or two-vortex flow depends mainly on the acceleratio n, but that of one-vortex flow also depends on the perturbation breaking the equatorial symmetry. The mechanism of development of a saddle point in the meridional plane at higher Re number and its role in the formation of two-vortex flow are analyzed.