870 resultados para saccadic eye movements


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most common decisions we make is the one about where to move our eyes next. Here we examine the impact that processing the evidence supporting competing options has on saccade programming. Participants were asked to saccade to one of two possible visual targets indicated by a cloud of moving dots. We varied the evidence which supported saccade target choice by manipulating the proportion of dots moving towards one target or the other. The task was found to become easier as the evidence supporting target choice increased. This was reflected in an increase in percent correct and a decrease in saccade latency. The trajectory and landing position of saccades were found to deviate away from the non-selected target reflecting the choice of the target and the inhibition of the non-target. The extent of the deviation was found to increase with amount of sensory evidence supporting target choice. This shows that decision-making processes involved in saccade target choice have an impact on the spatial control of a saccade. This would seem to extend the notion of the processes involved in the control of saccade metrics beyond a competition between visual stimuli to one also reflecting a competition between options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saccadic eye movements have been shown to affect posture by decreasing the magnitude of body sway in young adults. However, there is no evidence of how the search for visual information that occurs during eye movements affects postural control in older adults. The purpose of the present study was to determine the influence of saccadic eye movements on postural control in older adults while they stood on 2 different bases of support. Twelve older adults stood upright in 70-s trials under 2 stance conditions (wide and narrow) and 3 gaze conditions (fixation, saccadic eye movements at 0.5 Hz, and saccadic eye movements at 1.1 Hz). Head and trunk sway amplitude and mean sway frequency were measured in both the anterior/posterior (AP) and medial/lateral (ML) directions. The results showed that the amplitude of body sway was reduced during saccades compared with fixation, as previously observed in young adults. However, older adults exhibited similar sway amplitude and frequency in the AP direction under the wide and narrow stance conditions, which is different from observations in young adults, who display larger sway in a narrow stance compared with a wide stance while performing saccades. These results suggest that although older adults are affected by saccadic eye movements by a decrease in the amplitude of body sway, as observed in young adults, they present a more rigid postural control strategy that does not allow larger sway during a more challenging stance condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impairment of cognitive performance during and after high-altitude climbing has been described in numerous studies and has mostly been attributed to cerebral hypoxia and resulting functional and structural cerebral alterations. To investigate the hypothesis that high-altitude climbing leads to cognitive impairment, we used of neuropsychological tests and measurements of eye movement (EM) performance during different stimulus conditions. The study was conducted in 32 mountaineers participating in an expedition to Muztagh Ata (7,546 m). Neuropsychological tests comprised figural fluency, line bisection, letter and number cancellation, and a modified pegboard task. Saccadic performance was evaluated under three stimulus conditions with varying degrees of cortical involvement: visually guided pro- and anti-saccades, and visuo-visual interaction. Typical saccade parameters (latency, mean sequence, post-saccadic stability, and error rate) were computed off-line. Measurements were taken at a baseline level of 440 m and at altitudes of 4,497, 5,533, 6,265, and again at 440 m. All subjects reached 5,533 m, and 28 reached 6,265 m. The neuropsychological test results did not reveal any cognitive impairment. Complete eye movement recordings for all stimulus conditions were obtained in 24 subjects at baseline and at least two altitudes and in 10 subjects at baseline and all altitudes. Measurements of saccade performances showed no dependence on any altitude-related parameter and were well within normal limits. Our data indicates that acclimatized climbers do not seem to suffer from significant cognitive deficits during or after climbs to altitudes above 7,500 m. We demonstrated that investigation of EMs is feasible during high-altitude expeditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New-onset impairment of ocular motility will cause incomitant strabismus, i.e., a gaze-dependent ocular misalignment. This ocular misalignment will cause retinal disparity, that is, a deviation of the spatial position of an image on the retina of both eyes, which is a trigger for a vergence eye movement that results in ocular realignment. If the vergence movement fails, the eyes remain misaligned, resulting in double vision. Adaptive processes to such incomitant vergence stimuli are poorly understood. In this study, we have investigated the physiological oculomotor response of saccadic and vergence eye movements in healthy individuals after shifting gaze from a viewing position without image disparity into a field of view with increased image disparity, thus in conditions mimicking incomitance. Repetitive saccadic eye movements into a visual field with increased stimulus disparity lead to a rapid modification of the oculomotor response: (a) Saccades showed immediate disconjugacy (p < 0.001) resulting in decreased retinal image disparity at the end of a saccade. (b) Vergence kinetics improved over time (p < 0.001). This modified oculomotor response enables a more prompt restoration of ocular alignment in new-onset incomitance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been claimed that the symptoms of post-traumatic stress disorder (PTSD) can be ameliorated by eye-movement desensitization-reprocessing therapy (EMD-R), a procedure that involves the individual making saccadic eye-movements while imagining the traumatic event. We hypothesized that these eye-movements reduce the vividness of distressing images by disrupting the function of the visuospatial sketchpad (VSSP) of working memory, and that by doing so they reduce the intensity of the emotion associated with the image. This hypothesis was tested by asking non-PTSD participants to form images of neutral and negative pictures under dual task conditions. Their images were less vivid with concurrent eye-movements and with a concurrent spatial tapping task that did not involve eye-movements. In the first three experiments, these secondary tasks did not consistently affect participants' emotional responses to the images. However, Expt 4 used personal recollections as stimuli for the imagery task, and demonstrated a significant reduction in emotional response under the same dual task conditions. These results suggest that, if EMD-R works, it does so by reducing the vividness and emotiveness of traumatic images via the VSSP of working memory. Other visuospatial tasks may also be of therapeutic value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many common activities, like reading, scanning scenes, or searching for an inconspicuous item in a cluttered environment, entail serial movements of the eyes that shift the gaze from one object to another. Previous studies have shown that the primate brain is capable of programming sequential saccadic eye movements in parallel. Given that the onset of saccades directed to a target are unpredictable in individual trials, what prevents a saccade during parallel programming from being executed in the direction of the second target before execution of another saccade in the direction of the first target remains unclear. Using a computational model, here we demonstrate that sequential saccades inhibit each other and share the brain's limited processing resources (capacity) so that the planning of a saccade in the direction of the first target always finishes first. In this framework, the latency of a saccade increases linearly with the fraction of capacity allocated to the other saccade in the sequence, and exponentially with the duration of capacity sharing. Our study establishes a link between the dual-task paradigm and the ramp-to-threshold model of response time to identify a physiologically viable mechanism that preserves the serial order of saccades without compromising the speed of performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed at analyzing the relationship between slow- and fast-alpha asymmetry within frontal cortex and the planning, execution and voluntary control of saccadic eye movements (SEM), and quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 12 healthy participants performing a fixed (i.e., memory-driven) and a random SEM (i.e., stimulus-driven) condition. We find main effects for SEM condition in slow- and fast-alpha asymmetry at electrodes F3-F4, which are located over premotor cortex, specifically a negative asymmetry between conditions. When analyzing electrodes F7-F8, which are located over prefrontal cortex, we found a main effect for condition in slow-alpha asymmetry, particularly a positive asymmetry between conditions. In conclusion, the present approach supports the association of slow- and fast-alpha bands with the planning and preparation of SEM, and the specific role of these sub-bands for both, the attention network and the coordination and integration of sensory information with a (oculo)-motor response. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How the brain maintains perceptual continuity across eye movements that yield discontinuous snapshots of the world is still poorly understood. In this study, we adapted a framework from the dual-task paradigm, well suited to reveal bottlenecks in mental processing, to study how information is processed across sequential saccades. The pattern of RTs allowed us to distinguish among three forms of trans-saccadic processing (no trans-saccadic processing, trans-saccadic visual processing and trans-saccadic visual processing and saccade planning models). Using a cued double-step saccade task, we show that even though saccade execution is a processing bottleneck, limiting access to incoming visual information, partial visual and motor processing that occur prior to saccade execution is used to guide the next eye movement. These results provide insights into how the oculomotor system is designed to process information across multiple fixations that occur during natural scanning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In visual search one tries to find the currently relevant item among other, irrelevant items. In the present study, visual search performance for complex objects (characters, faces, computer icons and words) was investigated, and the contribution of different stimulus properties, such as luminance contrast between characters and background, set size, stimulus size, colour contrast, spatial frequency, and stimulus layout were investigated. Subjects were required to search for a target object among distracter objects in two-dimensional stimulus arrays. The outcome measure was threshold search time, that is, the presentation duration of the stimulus array required by the subject to find the target with a certain probability. It reflects the time used for visual processing separated from the time used for decision making and manual reactions. The duration of stimulus presentation was controlled by an adaptive staircase method. The number and duration of eye fixations, saccade amplitude, and perceptual span, i.e., the number of items that can be processed during a single fixation, were measured. It was found that search performance was correlated with the number of fixations needed to find the target. Search time and the number of fixations increased with increasing stimulus set size. On the other hand, several complex objects could be processed during a single fixation, i.e., within the perceptual span. Search time and the number of fixations depended on object type as well as luminance contrast. The size of the perceptual span was smaller for more complex objects, and decreased with decreasing luminance contrast within object type, especially for very low contrasts. In addition, the size and shape of perceptual span explained the changes in search performance for different stimulus layouts in word search. Perceptual span was scale invariant for a 16-fold range of stimulus sizes, i.e., the number of items processed during a single fixation was independent of retinal stimulus size or viewing distance. It is suggested that saccadic visual search consists of both serial (eye movements) and parallel (processing within perceptual span) components, and that the size of the perceptual span may explain the effectiveness of saccadic search in different stimulus conditions. Further, low-level visual factors, such as the anatomical structure of the retina, peripheral stimulus visibility and resolution requirements for the identification of different object types are proposed to constrain the size of the perceptual span, and thus, limit visual search performance. Similar methods were used in a clinical study to characterise the visual search performance and eye movements of neurological patients with chronic solvent-induced encephalopathy (CSE). In addition, the data about the effects of different stimulus properties on visual search in normal subjects were presented as simple practical guidelines, so that the limits of human visual perception could be taken into account in the design of user interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How does the brain use eye movements to track objects that move in unpredictable directions and speeds? Saccadic eye movements rapidly foveate peripheral visual or auditory targets and smooth pursuit eye movements keep the fovea pointed toward an attended moving target. Analyses of tracking data in monkeys and humans reveal systematic deviations from predictions of the simplest model of saccade-pursuit interactions, which would use no interactions other than common target selection and recruitment of shared motoneurons. Instead, saccadic and smooth pursuit movements cooperate to cancel errors of gaze position and velocity, and thus to maximize target visibility through time. How are these two systems coordinated to promote visual localization and identification of moving targets? How are saccades calibrated to correctly foveate a target despite its continued motion during the saccade? A neural model proposes answers to such questions. The modeled interactions encompass motion processing areas MT, MST, FPA, DLPN and NRTP; saccade planning and execution areas FEF and SC; the saccadic generator in the brain stem; and the cerebellum. Simulations illustrate the model’s ability to functionally explain and quantitatively simulate anatomical, neurophysiological and behavioral data about SAC-SPEM tracking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In view of the evidence that cognitive deficits in schizophrenia are critically important for long-term outcome, it is essential to establish the effects that the various antipsychotic compounds have on cognition, particularly second-generation drugs. This parallel group, placebo-controlled study aimed to compare the effects in healthy volunteers (n = 128) of acute doses of the atypical antipsychotics amisulpride (300 mg) and risperidone (3 mg) to those of chlorpromazine (100 mg) on tests thought relevant to the schizophrenic process: auditory and visual latent inhibition, prepulse inhibition of the acoustic startle response, executive function and eye movements. The drugs tested were not found to affect auditory latent inhibition, prepulse inhibition or executive functioning as measured by the Cambridge Neuropsychological Test Battery and the FAS test of verbal fluency. However, risperidone disrupted and amisulpride showed a trend to disrupt visual latent inhibition. Although amisulpride did not affect eye movements, both risperidone and chlorpromazine decreased peak saccadic velocity and increased antisaccade error rates, which, in the risperidone group, correlated with drug-induced akathisia. It was concluded that single doses of these drugs appear to have little effect on cognition, but may affect eye movement parameters in accordance with the amount of sedation and akathisia they produce. The effect risperidone had on latent inhibition is likely to relate to its serotonergic properties. Furthermore, as the trend for disrupted visual latent inhibition following amisulpride was similar in nature to that which would be expected with amphetamine, it was concluded that its behaviour in this model is consistent with its preferential presynaptic dopamine antagonistic activity in low dose and its efficacy in the negative symptoms of schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of eye movements during simulated travel toward a grove of four stationary trees revealed that observers looked most at pairs of trees that converged or decelerated apart. Such pairs specify that one's direction of travel, called heading, is to the outside of the near member of the pair. Observers looked at these trees more than those that accelerated apart; such pairs do not offer trustworthy heading information. Observers also looked at gaps between trees less often when they converged or diverged apart, and heading can never be between such pairs. Heading responses were in accord with eye movements. In general, if observers responded accurately, they had looked at trees that converged or decelerated apart; if they were inaccurate, they had not. Results support the notion that observers seek out their heading through eye movements, saccading to and fixating on the most informative locations in the field of view.