11 resultados para sHsps
Resumo:
Els organismes responen a la temperatura i a molts altres estressos sintetitzant un grup de proteïnes anomenat proteïnes de xoc de calor (HSPs). En plantes les sHsps, d'entre 15 i 30 kDa formen el grup més abundant i divers, classificat en funció de la seva localització subcel.lular i homologia en: mitocondrials, cloroplàstiques, de reticle endoplasmàtic i citoplàsmiques de classe I i II. Les sHsps-CI s'ha descrit que s'indueixen per estrès tèrmic, hídric i oxidatiu (peròxid d'hidrògen, llum UV, ozó) i en resposta a algunes hormones. També s'expressen durant el desenvolupament, per exemple durant l'embriogènesi, on es creu que podrien tenir un paper protector de l'embrió enfront la dessecació. Tot i que hi ha abundants treballs que correlacionen la resistència a l'estrès i l'acumulació de sHsps-CI, els mecanismes moleculars d'aquesta activitat són poc conguts. Tot i això, per diverses sHsps-CI ha estat descrita una activitat xaperona in vitro i, més recentment, que la seva sobreexpressió augmenta la viabilitat de cèl.lules d'E.coli en condicions d'estrès tèrmic. L'estudi de l'acumulació de sHsps-CI en surera (Quercus suber) mitjançant immunodetecció en electroforesi bidimensional mostra uns patrons d'acumulació complexos i formats per dos grups d'espècies proteiques principals, a l'entorn dels 10 i 17 kDa respectivament, que mostren una inducció diferencial en funció del teixit i l'estrès. Mentre que les espècies proteiques de 17 kDa s'indueixen per temperatura però no per estrès oxidatiu, les de ca. 10 kDa ho fan per estrès oxidatiu i no per temperatura. Ambdós grups d'espècies proteiques s'acumulen conjuntament en fel.lema. Assajos de PCR i RT-PCR han permès clonar parcialment tres noves sHsps-CI en surera: Qshsp10-CI, QshspC-CI i QshspD-CI. Aquest fet confirma la multigeneïcitat de les sHsps-CI en surera que apuntava el patró bidimensional. Dels nous clons obtinguts destaca especialment Qshsp10-CI, un gen que presenta un codó stop enmig del domini -cristal.lí que fa que a la proteïna que se'n dedueix li manqui un 55% del domini -cristal.lí i tota l'extensió C-terminal. Es tractaria de la sHsp més petita i més truncada descrita fins al moment. L'anàlisi de l'expressió de Qshsp10-CI mitjançant RT-PCR mostra expressió en plantes tractades amb H2O2 però no en les que han estat sotmeses a un xoc de calor. Aprofitant l'oportunitat que oferia aquesta sHsp-CI de ser utilitzada com a model per l'estudi de la importància del domini -cristal.lí i l'extensió C-terminal en l'activitat protectora enfront l'estrès, es va voler determinar la capacitat que tenia d'augmentar la viabilitat de cèl.lules d'E. coli en condicions d'estrès tèrmic i oxidatiu. Els resultats mostren que la proteïna recombinant QsHsp10-CI, tot i la important truncació que té, és capaç de protegir cèl.lules d'E. coli en condicions d'estrès tèrmic i, remarcablement, en condicions d'estrès oxidatiu. Tots aquests resultats indiquen que les espècies proteiques de ca. 10 kDa podrien correspondre a Qshsp10-CI i tenir un paper en les cèl.lules del fel.lema en la protecció enfront l'estrès oxidatiu. L'estrès oxidatiu provoca lesions al DNA que poden produir errors en la replicació, transcripció o traducció i generar proteïnes aberrants. Donades les condicions d'estrès oxidatiu a les quals es troben sotmeses les cèl.lules del fel.lema, s'ha volgut estudiar la variabilitat dels seus àcids nucleics. La determinació de la taxa de mutació de la regió codificant del gen Qshsp17.4-CI en mRNA i DNA de fel.lema i àpex radicular, un teixit jove i en creixement actiu va mostrar unes taxes sorprenentment elevades en l'mRNA (1/1784 pb) i el DNA genòmic (1/1520 pb) del fel.lema. Aquestes taxes són les més altes descrites en un genoma nuclear eucariota i són similars a les dels virus d'RNA d'evolució ràpida com el virus de l'Hepatitis C. Amb aquestes taxes de mutació, un terç dels mRNAs del fel.lema de la surera contindrien missatges aberrants i la supervivència de les cel.lules es veuria compromesa. Això implica que el fel.lema hauria de ser considerat com un mosaic de cèl.lules genèticament heterogènies i, per tant, una sola seqüència no defineix en tota la seva amplitud un gen en aquest teixit. No es va detectar cap mutació en àpex de rel. Amb l'objectiu d'aprofundir en el coneixement de les mutacions que es donen en aquests dos teixits i per tal de poder fer una anàlisi qualitativa més completa que permetés especular sobre el seu origen, es va aplicar un mètode de selecció de seqüències mutants en base a la utilització d'enzims de restricció. Les mutacions detectades en fel.lema es corresponen amb les relacionades, en altres sistemes no nuclears (plasmidis, fags i DNA bacterià), amb l'estrès oxidatiu. En conseqüència, l'estrès oxidatiu al qual estan sotmeses les cèl.lules del fel.lema podria ser el causant de l'elevada taxa de mutació detectada. D'acord amb això, el tipus majoritari de productes d'oxidació de les bases del DNA que s'acumulen en brots de plàntules de surera en resposta al peròxid d'hidrògen produeixen el mateix tipus de mutacions detectades en l'mRNA del fel.lema de la surera. La major sensibilitat d'aquest nou mètode ha permès, a més, detectar mutacions en molècules d'mRNA de rel, un teixit en el qual no s'havia trobat cap mutació utilitzant el mètode de clonatge i seqüenciació directa. Tot i això, el tipus de mutacions predominants no estan relacionades amb l'estrès oxidatiu sinó amb erros en la reparació dels àcids nucleics.
Resumo:
Aquesta tesi es centra en la caracterització funcional d'una proteïna de xoc de calor de baix pes molecular (Small Heat Shock Protein - sHSP) de classe I de surera pel que fa a la seva capacitat per protegir les cèl·lules de l'estrès i per estabilitzar les membranes. Les sHsps són proteïnes que s'expressen en condicions d'estrès cel·lular. Encara que certs aspectes funcionals de les sHsps són ben coneguts, el nostre treball aporta informacions noves sobre el paper de les diferents regions de la proteïna, especialment de la regió N-terminal. L'objectiu concret d'aquest treball és determinar la funció termoprotectora de QsHsp17.4-CI, una sHsp de classe I oobtinguda a partir de les cèl·lules de fel·lema d'alzina surera, en un model bacterià i analitzar la importància de les diferents regions de la proteïna en aquesta funció. Amb aquesta finalitat s'han dissenyat dues proteïnes parcials derivades de QsHsp17.4-CI: una a la que li falta la regió N-terminal (C105) i una altra amb pràcticament tot el domini -cristal·lí deleccionat (N61), i una tercera, derivada de QsHs10-CI, a la que li falta la meitat del domini -cristal·lí (Hsp10). També s'estudia la possible capacitat estabilitzadora de membranes i la capacitat de modificar l'expressió d'altres Hsps quan s'expressa de forma heteròloga. Els nostres resultats demostren que l'expressió de QsHsp17.4-CI protegeix a les cèl·lules d'E.coli de l'estrès tèrmic alhora que la regió N-terminal i la regió consens II del domini -cristal·lí són imprescindibles per aquesta funció de protecció. En relació a un possible paper en les membranes, els estudis de localització subcel·lular mostren que QsHsp17.4-CI colocalitza amb la fracció membranes i que la regió N-terminal de la proteïna és responsable d'aquesta colocalització. No s'ha pogut demostrar, però, que la localització amb la membrana estigui associada a un efecte protector d'aquesta: en cap cas la sobrexpressió de les proteïnes modifica la composició d'àcids grassos i només N61, que no té acció termoprotectora, altera l'estat fisico-químic de la membrana. En estudis d'expressió de novo en E.coli s'ha observat que, a diferència de les altres proteïnes heteròlogues, N61 activa l'expressió de la majoria de Hsps d'E.coli fent pensar en una possible relació entre l'estat físic de la membrana i l'activació de la resposta a l'estrès. En resum, en aquest treball hem provat la capacitat protectora de QsHsp17.4 i aportem noves dades sobre la importància de la regió N-terminal i la regió consens II del domini -cristal·lí en aquesta funció. Per altra banda, es suggereix que QsHsp17.4 podria interaccionar amb la membrana d'E.coli i que la regió N-terminal seria imprescindible per aquesta interacció. Finalment hem determinat que les proteïnes que provoquen variacions en l'estat de fluïdesa de la membrana poden activar la resposta al xoc de calor per part de la cèl·lula bacteriana.
Resumo:
A síntese de proteínas de choque térmico é uma alteração fisiológica transiente na célula de organismos expostos a temperaturas supra-ótimas. A resposta fisiológica ao choque térmico é dependente, particularmente, do tipo de célula e da capacidade dos organismos em responder às alterações do meio. O presente trabalho teve como objetivo avaliar o crescimento micelial e a síntese de proteínas de choque térmico de dois isolados de Pisolithus sp. (RV82 e RS24) e de um isolado de Paxillus involutus em temperaturas supra-ótimas. No trabalho, foram feitas análises de crescimento micelial em placa de Petri com meio apropriado para o crescimento sob condições de temperaturas subletais, letais e de choque térmico. As proteínas nos micélios dos isolados foram marcadas com aminoácido radioativo (³H-leucina), e a radioatividade, quantificada em solução de cintilação. A síntese das proteínas de choque térmico (HSPs) foi avaliada em gel de poliacrilamida (SDS-PAGE e 2D-PAGE). Demonstrou-se, com ³H-leucina, que os fungos ectomicorrízicos apresentaram respostas diferenciadas em relação ao crescimento micelial quando expostos a temperaturas supra-ótimas. Os dois isolados de Pisolithus sp., RS24 e RV82, mostraram-se mais tolerantes a altas temperaturas, quando comparado ao isolado de P. involutus. Os isolados de Pisolithus sp. diferem quanto à síntese de proteínas de estresse, com a síntese de HSPs de alta e de baixa massa molecular. Em resposta ao choque térmico, o isolado RV82 sintetizou proteínas putativas dos grupos HSP70, HSP28 e HSP26 e as sHSPs (15-18 kDa), enquanto o isolado RS24 sintetizou as dos grupos HSP86, HSP60, HSP55 e HSP35 e as sHSPs (12-18 kDa). A baixa tolerância a temperaturas elevadas do isolado de P. involutus foi atribuída à ausência de síntese de proteínas putativas do grupo HSPs em condições de choque térmico. Os resultados sugerem que os isolados de fungos ectomicorrízicos diferem quanto ao mecanismo de indução de termotolerância.
Resumo:
Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17.5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37°C to 50°C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4°C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress
Resumo:
Las temperaturas extremas, la sequía y otros estreses abióticos limitan la producción forestal de forma significativa, causando grandes pérdidas económicas en el sector. Los árboles, al ser organismos sésiles, han desarrollado una serie de estrategias para percibir dichos factores, activando respuestas defensivas apropiadas. Entre ellas ocupa un lugar preeminente la síntesis de proteínas con actividad chaperona molecular. Las chaperonas moleculares interaccionan con proteínas desnaturalizadas total o parcialmente, promoviendo su correcto plegamiento y ensamblaje. Las chaperonas moleculares que se sintetizan de forma predominante en plantas, pero no en otros eucariotas, pertenecen a la familia sHSP (small heat-shock proteins). Se trata de una familia inusualmente compleja y heterogénea, cuyos miembros son de pequeño tamaño (16-42 kD) y poseen un dominio “alfa-cristalina” muy conservado. Estas proteínas están implicadas en protección frente a estrés abiótico mediante la estabilización de proteínas y membranas, si bien su mecanismo de acción se conoce de forma incompleta. A pesar del evidente potencial aplicado de las proteínas sHSP, son muy escasos los estudios realizados hasta el momento con un enfoque netamente biotecnológico. Por otra parte, casi todos ellos se han llevado a cabo en especies herbáceas de interés agronómico o en especies modelo, como Arabidopsis thaliana. De ahí que las sHSP de arbóreas hayan sido mucho menos caracterizadas estructural y funcionalmente, y ello a pesar del interés económico y ecológico de los árboles y de su prolongada exposición vital a múltiples factores estresantes. La presente Tesis Doctoral se centra en el estudio de sHSP de varias especies arbóreas de interés económico. El escrutinio exhaustivo de genotecas de cDNA de órganos vegetativos nos ha permitido identificar y caracterizar los componentes mayoritarios de tallo en dos especies productoras de madera noble: nogal y cerezo. También hemos caracterizado la familia completa en chopo, a partir de su secuencia genómica completa. Mediante expresión heteróloga en bacterias, hemos analizado el efecto protector de estas proteínas in vivo frente a distintos tipos de estrés abiótico, relevantes para el sector productivo. Los resultados demuestran que las proteínas sHSP-CI: (i) aumentan la viabilidad celular de E.coli frente a casi todos estos factores, aplicados de forma individual o combinada; (ii) ejercen un rol estabilizador de las membranas celulares frente a condiciones adversas; (iii) sirven para mejorar la producción de otras proteínas recombinantes de interés comercial. El efecto protector de las proteínas sHSP-CI también ha sido analizado in planta, mediante la expresión ectópica de CsHSP17.5-CI en chopos. En condiciones normales de crecimiento no se han observado diferencias fenotípicas entre las líneas transgénicas y los controles, lo que demuestra que se pueden sobre-expresar estas proteínas sin efectos pleiotrópicos deletéreos. En condiciones de estrés térmico, por el contrario, los chopos transgénicos mostraron menos daños y un mejor crecimiento neto. En línea con lo anterior, las actividades biológicas de varias enzimas resultaron más protegidas frente a la inactivación por calor, corroborando la actividad chaperona propuesta para la familia sHSP y su conexión con la tolerancia al estrés abiótico. En lo que respecta a la multiplicación y propagación de chopo in vitro, una forma de cultivo que comporta estrés para las plantas, todas las líneas transgénicas se comportaron mejor que los controles en términos de producción de biomasa (callos) y regeneración de brotes, incluso en ausencia de estrés térmico. También se comportaron mejor durante su cultivo ex vitro. Estos resultados tienen gran potencial aplicado, dada la recalcitrancia de muchas especies vegetales de interés económico a la micropropagación y a la manipulación in vitro en general. Los resultados derivados de esta Tesis, aparte de aportar datos nuevos sobre el efecto protector de las proteínas sHSP citosólicas mayoritarias (clase CI), demuestran por vez primera que la termotolerancia de los árboles puede ser manipulada racionalmente, incrementando los niveles de sHSP mediante técnicas de ingeniería genética. Su interés aplicado es evidente, especialmente en un escenario de calentamiento global. ABSTRACT Abiotic stress produces considerable economic losses in the forest sector, with extreme temperature and drought being amongst the most relevant factors. As sessile organisms, plants have acquired molecular strategies to detect and recognize stressful factors and activate appropriate responses. A wealth of evidence has correlated such responses with the massive induction of proteins belonging to the molecular chaperone family. Molecular chaperones are proteins which interact with incorrectly folded proteins to help them refold to their native state. In contrast to other eukaryotes, the most prominent stress-induced molecular chaperones of plants belong to the sHSP (small Heat Shock Protein) family. sHSPs are a widespread and diverse class of molecular chaperones that range in size from 16 to 42k Da, and whose members have a highly conserved “alpha-crystallin” domain. sHSP proteins play an important role in abiotic stress tolerance, membrane stabilization and developmental processes. Yet, their mechanism of action remains largely unknown. Despite the applied potential of these proteins, only a few studies have addressed so far the biotechnological implications of this protein family. Most studies have focused on herbaceous species of agronomic interest or on model species such as Arabidopsis thaliana. Hence, sHSP are poorly characterized in long-lived woody species, despite their economic and ecological relevance. This Thesis studies sHSPs from several woody species of economic interest. The most prominent components, namely cytosolic class I sHSPs, have been identified and characterized, either by cDNA library screening (walnut, cherry) or by searching the complete genomic sequence (poplar). Through heterologous bacterial expression, we analyzed the in vivo protective effects of selected components against abiotic stress. Our results demonstrate that sHSP-CI proteins: (i) protect E. coli cells against different stressful conditions, alone or combined; (ii) stabilize cell membranes; (iii) improve the production of other recombinant proteins with commercial interest. The effects of CsHSP17.5-CI overexpression have also been studied in hybrid poplar. Interestingly, the accumulation of this protein does not have any appreciable phenotypic effects under normal growth conditions. However, the transgenic poplar lines showed enhanced net growth and reduced injury under heat-stress conditions compared to vector controls. Biochemical analysis of leaf extracts revealed that important enzyme activities were more protected in such lines against heat-induced inactivation than in control lines, lending further support to the chaperone mode of action proposed for the sHSP family. All transgenic lines showed improved in vitro and ex vitro performance (calli biomass, bud induction, shoot regeneration) compared to controls, even in the absence of thermal stress. Besides providing new insights on the protective role of HSP-CI proteins, our results bolster the notion that heat stress tolerance can be readily manipulated in trees through genetic engineering. The applied value of these results is evident, especially under a global warming scenario.
Resumo:
Knowledge of the origin and evolution of gene families is critical to our understanding of the evolution of protein function. To gain a detailed understanding of the evolution of the small heat shock proteins (sHSPs) in plants, we have examined the evolutionary history of the chloroplast (CP)-localized sHSPs. Previously, these nuclear-encoded CP proteins had been identified only from angiosperms. This study reveals the presence of the CP sHSPs in a moss, Funaria hygrometrica. Two clones for CP sHSPs were isolated from a F. hygrometrica heat shock cDNA library that represent two distinct CP sHSP genes. Our analysis of the CP sHSPs reveals unexpected evolutionary relationships and patterns of sequence conservation. Phylogenetic analysis of the CP sHSPs with other plant CP sHSPs and eukaryotic, archaeal, and bacterial sHSPs shows that the CP sHSPs are not closely related to the cyanobacterial sHSPs. Thus, they most likely evolved via gene duplication from a nuclear-encoded cytosolic sHSP and not via gene transfer from the CP endosymbiont. Previous sequence analysis had shown that all angiosperm CP sHSPs possess a methionine-rich region in the N-terminal domain. The primary sequence of this region is not highly conserved in the F. hygrometrica CP sHSPs. This lack of sequence conservation indicates that sometime in land plant evolution, after the divergence of mosses from the common ancestor of angiosperms but before the monocot–dicot divergence, there was a change in the selective constraints acting on the CP sHSPs.
Resumo:
The small heat shock proteins (sHSPs) are ubiquitous stress proteins proposed to act as molecular chaperones to prevent irreversible protein denaturation. We characterized the chaperone activity of Synechocystis HSP17 and found that it has not only protein-protective activity, but also a previously unrecognized ability to stabilize lipid membranes. Like other sHSPs, recombinant Synechocystis HSP17 formed stable complexes with denatured malate dehydrogenase and served as a reservoir for the unfolded substrate, transferring it to the DnaK/DnaJ/GrpE and GroEL/ES chaperone network for subsequent refolding. Large unilamellar vesicles made of synthetic and cyanobacterial lipids were found to modulate this refolding process. Investigation of HSP17-lipid interactions revealed a preference for the liquid crystalline phase and resulted in an elevated physical order in model lipid membranes. Direct evidence for the participation of HSP17 in the control of thylakoid membrane physical state in vivo was gained by examining an hsp17− deletion mutant compared with the isogenic wild-type hsp17+ revertant Synechocystis cells. We suggest that, together with GroEL, HSP17 behaves as an amphitropic protein and plays a dual role. Depending on its membrane or cytosolic location, it may function as a “membrane stabilizing factor” as well as a member of a multichaperone protein-folding network. Membrane association of sHSPs could antagonize the heat-induced hyperfluidization of specific membrane domains and thereby serve to preserve structural and functional integrity of biomembranes.
Resumo:
Plants synthesize several classes of small (15- to 30-kD monomer) heat-shock proteins (sHSPs) in response to heat stress, including a nuclear-encoded, chloroplast-localized sHSP (HSP21). Cytosolic sHSPs exist as large oligomers (approximately 200–800 kD) composed solely or primarily of sHSPs. Phosphorylation of mammalian sHSPs causes oligomer dissociation, which appears to be important for regulation of sHSP function. We examined the native structure and phosphorylation of chloroplast HSP21 to understand this protein's basic properties and to compare it with cytosolic sHSPs. The apparent size of native HSP21 complexes was > 200 kD and they did not dissociate during heat stress. We found no evidence that HSP21 or the plant cytosolic sHSPs are phosphorylated in vivo. A partial HSP21 complex purified from heat-stressed pea (Pisum sativum L.) leaves contained no proteins other than HSP21. Mature recombinant pea and Arabidopsis thaliana HSP21 were expressed in Escherichia coli, and purified recombinant Arabidopsis HSP21 assembled into homo-oligomeric complexes with the same apparent molecular mass as HSP21 complexes observed in heat-stressed leaf tissue. We propose that the native, functional form of chloroplast HSP21 is a large, oligomeric complex containing nine or more HSP21 subunits, and that plant sHSPs are not regulated by phosphorylation-induced dissociation.
Resumo:
Gli organismi vegetali mostrano una notevole capacità di adattamento alle condizioni di stress e lo studio delle componenti molecolari alla base dell'adattamento in colture cerealicole di interesse alimentare, come il frumento, è di particolare interesse per lo studio di varietà che consentano una buona produzione con basso input anche in condizioni ambientali non ottimali. L'esposizione delle colture cerealicole a stress termico durante determinate fasi del ciclo vitale influisce negativamente sulla resa e sulla qualità, a questo fine è necessario chiarire le basi genetiche e molecolari della termotolleranza per identificare geni e alleli vantaggiosi da impiegare in programmi di incrocio volti al miglioramento genetico. Numerosi studi dimostrano il coinvolgimento delle sHSP a localizzazione cloroplastica (in frumento sHSP26) nel meccanismo di acquisizione della termotolleranza e la loro interazione con diverse componenti del fotosistema II (PSII) che determinerebbe un’azione protettiva in condizioni di stress termico e altri tipi di stress. Lo scopo del progetto è quello di caratterizzare in frumento duro nuove varianti alleliche correlate alla tolleranza a stress termico mediate l'utilizzo del TILLING (Target Induced Local Lesion In Genome), un approccio di genetica inversa che prevede la mutagenesi e l'identificazione delle mutazioni indotte in siti di interesse. Durante la tesi sono state isolate e caratterizzate 3 sequenze geniche complete per smallHsp26 denominate TdHsp26-A1; TdHsp26-A2; TdHsp26-B1 e un putativo pseudogene denominato TdHsp26-A3. I geni isolati sono stati usati come target in analisi di TILLING in due popolazioni di frumento duro mutagenizzate con EMS (EtilMetanoSulfonato). Nel nostro studio sono stati impiegati due differenti approcci di TILLING: un approccio di TILLING classico mediante screening con High Resolution Melting (HRM) e un approccio innovativo che sfrutta un database di TILLING recentemente sviluppato. La popolazione di mutanti cv. Kronos è stata analizzata per la presenza di mutazioni in tutti e tre i geni individuati mediante ricerca online nel database di TILLING, il quale sfrutta la tecnica dell’exome capture sulla popolazione di TILLING seguito da sequenziamento ad alta processività. Attraverso questa tecnica sono state individuate, nella popolazione mutagenizzata di frumento duro cv. Kronos, 36 linee recanti mutazioni missenso. Contemporaneamente lo screening con HRM, effettuato su 960 genotipi della libreria di TILLING di frumento duro cv. Cham1 ha consentito di individuare mutazioni in una regione di 211bp di interesse funzionale del gene TdHsp26-B1, tra le quali 3 linee mutanti recanti mutazioni missenso in omozigosi. Alcune mutazioni missenso individuate sui due geni TdHsp26-A1 e TdHsp26-B1 sono state confermate in vivo nelle piante delle rispettive linee mutanti generando marcatori codominanti KASP (Kompetitive Allele Specific PCR) con cui è stato possibile verificare anche il grado di zigosità di tali mutazioni. Al fine di ridurre il numero di mutazioni non desiderate nelle linee risultate più interessanti, è stato eseguito il re-incrocio dei mutanti con i relativi parentali wild type ed inoltre sono stati generati alcuni doppi mutanti che consentiranno di comprendere meglio i meccanismi molecolari presieduti da questa classe genica. Gli individui F1 degli incroci sono stati poi genotipizzati con i medesimi marcatori KASP specifici per la mutazione di interesse per verificare la buona riuscita dell’incrocio. Questo approccio ha permesso di individuare ed implementare risorse genetiche utili ad intraprendere studi funzionali relativi al ruolo di smallHSP plastidiche implicate nella acquisizione di termotolleranza in frumento duro e di generare marcatori potenzialmente utili in futuri programmi di breeding.