992 resultados para runoff generation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on the fact that the concentration flowlines of overland flow depend on the surface landform of hillslope, a kinematic wave model was developed for simulating runoff generation and flow concentration caused by rainfall on hillslopes. The model-simulated results agree well with experimental observations. Applying the model to the practical case of Maoping slope, we obtained the characteristics of runoff generation and infiltration on the slope. Especially, the simulated results adequately reflected the confluent pattern of surface runoff, which offers a scientific foundation for designing the drainage engineering on the Maoping slope.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The prediction and estimate of water and soil loss is fundamental important for understanding the effect of the spatial heterogeneity of underlying surfaces and preventing ecological environment deterioration. In this paper, a dynamic model of runoff and sediment yield in small watersheds is established. The proposed model includes three components: runoff generation caused by rainfall, soil erosion on hillslopes by overland flow, and runoff concentration and sediment transport on watersheds. Applying the proposed model, the runoff and sediment yield processes in a typical catchment on the loess plateau was estimated, which exhibited a good agreement between predicted results and observation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Strong and sometimes extreme responses in runoff and soil erosion following wildfires have been reported worldwide. However, in the case of North-Central Portugal, little research had been carried out regarding the hydrologic and erosive impacts of several land management activities in recently burnt areas (such as ground preparation, post-fire logging or post-fire mitigation treatments). This study aims to assess post-fire runoff and soil erosion response on Eucalypt and Maritime pine plantations during the first, second and third years following wildfires. The effect of several pre-fire ground preparation operations (ploughed down-slope, contour ploughed and inclined terraces), post-fire logging activities (on both the eucalypt and pine plantations), as well as the application of hydromulch (a post-fire emergency treatment) on overland flow and soil erosion were compared to burnt but undisturbed and untreated areas. The intensive monitoring of runoff, soil erosion and selected soil properties served to determine the main factors involved in post-fire runoff and soil erosion and their spatial and temporal variation. Soil water repellency deserved special attention, due to its supposed important role for overland flow generation. Repeated rainfall simulation experiments (RSE’s), micro-scale runoff plots and bounded sediment fences were carried out and/or installed immediately after the wildfire on seven burnt slopes. Micro-scale runoff plots results under natural rainfall conditions were also compared to the RSE’s results, which was useful for assessing the representativeness of the data obtained with artificial rainfall. The results showed comparable runoff coefficient (20-60%) but lower sediment losses (125-1000 g m-2) than prior studies in Portugal, but especially outside Portugal. Lower sediment losses were related with the historic intensive land use in the area. In evaluating these losses, however, the shallowness and stoniness of the soils, as well as the high organic matter fraction of the eroded sediments (50%) must not be overlooked. Sediment limited erosion was measured in all the ploughed sites, probably due to the time since ploughing (several years). The disturbance of the soil surface cover due to post-fire logging and wood extraction substantially increased sediment losses at both the pine and eucalypt sites. Hydromulch effectiveness in reducing the runoff (70%) and sediment losses (83%) was attributed to the protective high coverage provided by hydromulch. The hydromulch significantly affected the soil cover and other soil properties and these changes also reduced the soil erosion risk. The rainfall amount was the main factor explaining the variance in runoff. However, a shift from rainfall amount to rainfall intensity was detected when either the surface cover or the infiltration capacity (hydrophilic conditions) increased. Sediment losses were controlled by rainfall intensity and surface cover. The role of soil water repellency on runoff generation was not consistent; the overall repellency levels alone were not enough to assess its hydrological impact. Soil water repellency explained runoff generation in the specific-sites model better than in the overall model. Additionally, soil moisture content was a better predictor for soil water repellency than antecedent rainfall. The natural rainfall results confirmed that RSE’s were able to capture the specific sediment losses and its organic matter content as well as the differences between the ploughed and unploughed sites. Repeated RSE’s also captured the seasonal variations in runoff and sediment losses attributed to soil water repellency. These results have implications for post-fire soil erosion modelling and soil conservation practices in the region, or areas with the same land use, climate and soil characteristics. The measured sediment loss, as well as the increasing frequency of ploughing in recently burnt and unburnt eucalypt stands, suggests ploughing is not an effective as a soil conservation measure. Logging activities with less impact are recommended in order to maintain the forest litter protecting the soil surface. Due to its high effectiveness in reducing runoff and soil erosion, hydromulch is recommended for highly sensitive and vulnerable areas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Runoff generation processes and pathways vary widely between catchments. Credible simulations of solute and pollutant transport in surface waters are dependent on models which facilitate appropriate, catchment-specific representations of perceptual models of the runoff generation process. Here, we present a flexible, semi-distributed landscape-scale rainfall-runoff modelling toolkit suitable for simulating a broad range of user-specified perceptual models of runoff generation and stream flow occurring in different climatic regions and landscape types. PERSiST (the Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport) is designed for simulating present-day hydrology; projecting possible future effects of climate or land use change on runoff and catchment water storage; and generating hydrologic inputs for the Integrated Catchments (INCA) family of models. PERSiST has limited data requirements and is calibrated using observed time series of precipitation, air temperature and runoff at one or more points in a river network. Here, we apply PERSiST to the river Thames in the UK and describe a Monte Carlo tool for model calibration, sensitivity and uncertainty analysis

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recolonisation of soil by macrofauna (especially ants, termites and earthworms) in rehabilitated open-cut mine sites is inevitable and, in terms of habitat restoration and function, typically of great value. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration, seepage, runoff generation and soil erosion. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, the soil macrofauna is typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions and field trials on post-mining lands are required to quantify (i) macrofauna–soil structure interactions, (ii) functional dynamics of macrofauna taxa,and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By recalling mankind's path during past 50 years in the present article, we mainly highlight the significance of environmental issues today. In particular, two major factors leading to environment deterioration in China such as water resources and coal burning are stressed on. Present-day environmental issues are obviously interdisciplinary, of multiple scales and multi-composition in nature. Therefore, a process-based approach for environment research is absolutely necessarily. A series of sub-processes, either physical, chemical or biological, are subsequently analyzed in order to established reasonable parameterization scheme and credible comprehensive model. And we are now in a position to answer questions still open to us, improve existing somewhat empirical engineering approaches and enhance quantitative accuracy in prediction. To illustrate this process-based research approach, three typical examples associated with the Yangtze River Estuary, Loess Plateau and Tenggeli Desert environments have been dealt with respectively. A theoretical model of vertical flow field accounting for runoff and tide interaction has been established to delineate salinity and sediment motion which are responsible for the formation of mouth bar at the outlet and the ecological evolution there. A kinematic wave theory combined with the revised Green-Ampt infiltration formula is applied to the prediction of runoff generation and erosion in three types of erosion region on the Loess Plateau. Three approaches describing water motion in SPAC system in arid areas at different levels have been improved by introducing vegetation sub-models. However, we have found that the formation of a dry sandy layer and biological crust skin are additional primary causes leading to deterioration of water supply and succession of ecological system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文将复杂地表条件对坡面流运动的影响概化为阻力的变化,运用运动波理论和修正的Green-Ampt入渗模型,建立了能够反映地表条件影响的坡面降雨入渗产流模型,数值结果与实验符合较好,运用该模型分析了植被、地形、坡长、坡度等地表条件对坡面产流过程的影响.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mathematical model was developed for simulating runoff generation and soil erosion on hillslopes. The model is comprised of three modules: one for overland flow, one for soil infiltration, and one for soil erosion including rill erosion and interrill er

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A two-dimensional kinematic wave model was developed for simulating runoff generation and flow concentration on an experimental infiltrating hillslope receiving artificial rainfall. Experimental observations on runoff generation and flow concentration on irregular hillslopes showed that the topography of the slope surface controlled the direction and flow lines of overland flow. The model-simulated results satisfactorily compared with experimental observations. The erosive ability of the concentrated flow was found to mainly depend on the ratio of the width and depth of confluent grooves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydrological response of a catchment to rainfall on different timescales is result of a complex system involving a range of physical processes which may operate simultaneously and have different spatial and temporal influences. This paper presents the analysis of streamflow response of a small humid-temperate catchment (Aixola, 4.8 km(2)) in the Basque Country on different timescales and discusses the role of the controlling factors. Firstly, daily time series analysis was used to establish a hypothesis on the general functioning of the catchment through the relationship between precipitation and discharge on an annual and multiannual scale (2003-2008). Second, rainfall-runoff relationships and relationships among several hydrological variables, including catchment antecedent conditions, were explored at the event scale (222 events) to check and improve the hypothesis. Finally, the evolution of electrical conductivity (EC) during some of the monitored storm events (28 events) was examined to identify the time origin of waters. Quick response of the catchment to almost all the rainfall events as well as a considerable regulation capacity was deduced from the correlation and spectral analyses. These results agree with runoff event scale data analysis; however, the event analysis revealed the non-linearity of the system, as antecedent conditions play a significant role in this catchment. Further, analysis at the event scale made possible to clarify factors controlling (precipitation, precipitation intensity and initial discharge) the different aspects of the runoff response (runoff coefficient and discharge increase) for this catchment. Finally, the evolution of EC of the waters enabled the time origin (event or pre-event waters) of the quickflow to be established; specifically, the conductivity showed that pre-event waters usually represent a high percentage of the total discharge during runoff peaks. The importance of soil waters in the catchment is being studied more deeply.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A non-linear perturbation model for river flow forecasting is developed, based on consideration of catchment wetness using an antecedent precipitation index (API). Catchment seasonality, of the form accounted for in the linear perturbation model (the LPM), and non-linear behaviour both in the runoff generation mechanism and in the flow routing processes are represented by a constrained nan-linear model, the NLPM-API. A total of ten catchments, across a range of climatic conditions and catchment area magnitudes, located in China and in other countries, were selected for testing daily rainfall-runoff forecasting with this model. It was found that the NLPM-API model was significantly more efficient than the original linear perturbation model (the LPM). However, restric tion of explicit nan-linearity to the runoff generation process, in the simpler LPM-API form of the model, did not produce a significantly lower value of the efficiency in flood forecasting, in terms of the model efficiency index R-2. (C) 1997 Elsevier Science B.V.