981 resultados para running shoes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Footwear remains a prime candidate for the prevention and rehabilitation of Achilles tendinopathy as it is thought to decrease tension in the tendon through elevation of the heel. However, evidence for this effect is equivocal. Purpose: This study used an acoustic transmission technique to investigate the effect of running shoes on Achilles tendon loading during barefoot and shod walking. Methods: Acoustic velocity was measured in the Achilles tendon of twelve recreationally–active males (age, 31±9 years; height, 1.78±0.06 m; weight, 81.0±16.9 kg) during barefoot and shod walking at matched self–selected speed (3.4±0.7 km/h). Standard running shoes incorporating a 10– mm heel offset were used. Vertical ground reaction force and spatiotemporal parameters were determined with an instrumented treadmill. Axial acoustic velocity in the Achilles tendon was measured using a custom built ultrasonic device. All data were acquired at a rate of 100 Hz during 10s of steady–state walking. Statistical comparisons between barefoot and shod conditions were made using paired t–tests and repeated measure ANOVAs. Results: Acoustic velocity in the Achilles tendon was highly reproducible and was typified by two maxima (P1, P2) and minima (M1, M2) during walking. Footwear resulted in a significant increase in step length, stance duration and peak vertical ground reaction force compared to barefoot walking. Peak acoustic velocity in the Achilles tendon (P1, P2) was significantly higher with running shoes. Conclusions: Peak acoustic velocity in the Achilles tendon was higher with footwear, suggesting that standard running shoes with a 10–mm heel offset increase tensile load in the Achilles tendon. Although further research is required, these findings question the therapeutic role of standard running shoes in Achilles tendinopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twelve participants ran (9 km . h(-1)) to test two types of running shoes: replica and original shoes. Ground reaction force, plantar pressure and electromyographic activity were recorded. The shoes were tested randomly and on different days. Comparisons between the two experimental conditions were made by analysis of variance (ANOVA) test (P <= 0.05). The time to first peak, loading rate of the first peak and impulse of the first 75 ms of stance were significantly different between the shoes (P <= 0.05), revealing an increase of impact forces for the replica shoes. The peak plantar pressure values were significantly higher (P <= 0.05) when wearing replica shoes. During running, the contact area was significantly smaller (P <= 0.05) for the replica shoe. The electromyographic activity of the analysed muscles did not show changes between the two shoes in running. These findings suggest that the use of replica running shoes can increase the external load applied to the human body, but may not change the muscle activity pattern during locomotion. This new mechanical situation may increase the risk of injuries in these movements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In children, joint hypermobility (typified by structural instability of joints) manifests clinically as neuro-muscular and musculo-skeletal conditions and conditions associated with development and organization of control of posture and gait (Finkelstein, 1916; Jahss, 1919; Sobel, 1926; Larsson, Mudholkar, Baum and Srivastava, 1995; Murray and Woo, 2001; Hakim and Grahame, 2003; Adib, Davies, Grahame, Woo and Murray, 2005:). The process of control of the relative proportions of joint mobility and stability, whilst maintaining equilibrium in standing posture and gait, is dependent upon the complex interrelationship between skeletal, muscular and neurological function (Massion, 1998; Gurfinkel, Ivanenko, Levik and Babakova, 1995; Shumway-Cook and Woollacott, 1995). The efficiency of this relies upon the integrity of neuro-muscular and musculo-skeletal components (ligaments, muscles, nerves), and the Central Nervous System’s capacity to interpret, process and integrate sensory information from visual, vestibular and proprioceptive sources (Crotts, Thompson, Nahom, Ryan and Newton, 1996; Riemann, Guskiewicz and Shields, 1999; Schmitz and Arnold, 1998) and development and incorporation of this into a representational scheme (postural reference frame) of body orientation with respect to internal and external environments (Gurfinkel et al., 1995; Roll and Roll, 1988). Sensory information from the base of support (feet) makes significant contribution to the development of reference frameworks (Kavounoudias, Roll and Roll, 1998). Problems with the structure and/ or function of any one, or combination of these components or systems, may result in partial loss of equilibrium and, therefore ineffectiveness or significant reduction in the capacity to interact with the environment, which may result in disability and/ or injury (Crotts et al., 1996; Rozzi, Lephart, Sterner and Kuligowski, 1999b). Whilst literature focusing upon clinical associations between joint hypermobility and conditions requiring therapeutic intervention has been abundant (Crego and Ford, 1952; Powell and Cantab, 1983; Dockery, in Jay, 1999; Grahame, 1971; Childs, 1986; Barton, Bird, Lindsay, Newton and Wright, 1995a; Rozzi, et al., 1999b; Kerr, Macmillan, Uttley and Luqmani, 2000; Grahame, 2001), there has been a deficit in controlled studies in which the neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility have been quantified and considered within the context of organization of postural control in standing balance and gait. This was the aim of this project, undertaken as three studies. The major study (Study One) compared the fundamental neuro-muscular and musculo-skeletal characteristics of 15 children with joint hypermobility, and 15 age (8 and 9 years), gender, height and weight matched non-hypermobile controls. Significant differences were identified between previously undiagnosed hypermobile (n=15) and non-hypermobile children (n=15) in passive joint ranges of motion of the lower limbs and lumbar spine, muscle tone of the lower leg and foot, barefoot CoP displacement and in parameters of barefoot gait. Clinically relevant differences were also noted in barefoot single leg balance time. There were no differences between groups in isometric muscle strength in ankle dorsiflexion, knee flexion or extension. The second comparative study investigated foot morphology in non-weight bearing and weight bearing load conditions of the same children with and without joint hypermobility using three dimensional images (plaster casts) of their feet. The preliminary phase of this study evaluated the casting technique against direct measures of foot length, forefoot width, RCSP and forefoot to rearfoot angle. Results indicated accurate representation of elementary foot morphology within the plaster images. The comparative study examined the between and within group differences in measures of foot length and width, and in measures above the support surface (heel inclination angle, forefoot to rearfoot angle, normalized arch height, height of the widest point of the heel) in the two load conditions. Results of measures from plaster images identified that hypermobile children have different barefoot weight bearing foot morphology above the support surface than non-hypermobile children, despite no differences in measures of foot length or width. Based upon the differences in components of control of posture and gait in the hypermobile group, identified in Study One and Study Two, the final study (Study Three), using the same subjects, tested the immediate effect of specifically designed custom-made foot orthoses upon balance and gait of hypermobile children. The design of the orthoses was evaluated against the direct measures and the measures from plaster images of the feet. This ascertained the differences in morphology of the modified casts used to mould the orthoses and the original image of the foot. The orthoses were fitted into standardized running shoes. The effect of the shoe alone was tested upon the non-hypermobile children as the non-therapeutic equivalent condition. Immediate improvement in balance was noted in single leg stance and CoP displacement in the hypermobile group together with significant immediate improvement in the percentage of gait phases and in the percentage of the gait cycle at which maximum plantar flexion of the ankle occurred in gait. The neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility are different from those of non-hypermobile children. The Beighton, Solomon and Soskolne (1973) screening criteria successfully classified joint hypermobility in children. As a result of this study joint hypermobility has been identified as a variable which must be controlled in studies of foot morphology and function in children. The outcomes of this study provide a basis upon which to further explore the association between joint hypermobility and neuro-muscular and musculo-skeletal conditions, and, have relevance for the physical education of children with joint hypermobility, for footwear and orthotic design processes, and, in particular, for clinical identification and treatment of children with joint hypermobility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to obtain a fundamental understanding of how running shoe midsole foam thickness contributes to footwear degradation using the heel and forefoot regions of traditional (TS) and minimalist (MS) running shoes. We hypothesized that ethylene vinyl acetate (EVA) foam midsole material properties and footwear degradation performance under a biofidelic mechanical ageing protocol would differ as a function of shoe type and thickness. Attenuated totalreflectance Fourier transform infrared spectra indicated that the foam chemical compositions were similar and confirmed that all midsoles were composed of EVA copolymer. Differences in density and cell size were detected between shoes and thicknesses. MS foam was uniformly high density (rMS D 240 kg/m3), while TS foam consisted of two co-molded layers with forefoot density (rTS-FF D 250 kg/m3) greater than heel (rTS-H D 160 kg/m3). Relative density and cell size values were generally proportional and inversely proportional to density, respectively. Degradation from mechanical ageing was greatest in the first 2 km of ageing, with the full ageing (21 km) resulting in an average 54% loss of energy absorption. Regardless of shoe type or foam microstructure, thicker and softer heel foams absorbed 83% more energy but degraded ata 49% faster rate. The fact that the heel degraded more rapidly than forefoot caused the drop to decrease at an equivalent rate for both shoe types. Overall, thickness was a greater predictor of average performance than microstructure variables for the present footwear conditions. However, the apparent drawback of thicker foam was exemplified by heel samples, which underwent a 1.4 mm greater loss of thickness and lost 550 mJ more energy absorption than forefoot samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Elevated patellofemoral joint stress is thought to contribute to the development and progression of patellofemoral pain syndrome. The purpose of this study was to determine if running barefoot decreases patellofemoral joint stress in comparison to shod running. Running barefoot decreased peak patellofemoral joint stress by 12% (p=0.000) in comparison to shod running. The reduction in patellofemoral joint stress was a result of reduced patellofemoral joint reaction forces (12%, p=0.000) while running barefoot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performance in endurance sports such as running, cycling and triathlon has long been investigated from a physiological perspective. A strong relationship between running economy and distance running performance is well established in the literature. From this established base, improvements in running economy have traditionally been achieved through endurance training. More recently, research has demonstrated short-term resistance and plyometric training has resulted in enhanced running economy. This improvement in running economy has been hypothesized to be a result of enhanced neuromuscular characteristics such as improved muscle power development and more efficient use of stored elastic energy during running. Changes in indirect measures of neuromuscular control (i.e. stance phase contact times, maximal forward jumps) have been used to support this hypothesis. These results suggest that neuromuscular adaptations in response to training (i.e. neuromuscular learning effects) are an important contributor to enhancements in running economy. However, there is no direct evidence to suggest that these adaptations translate into more efficient muscle recruitment patterns during running. Optimization of training and run performance may be facilitated through direct investigation of muscle recruitment patterns before and after training interventions.

There is emerging evidence that demonstrates neuromuscular adaptations during running and cycling vary with training status. Highly trained runners and cyclists display more refined patterns of muscle recruitment than their novice counterparts. In contrast, interference with motor learning and neuromuscular adaptation may occur as a result of ongoing multidiscipline training (e.g. triathlon). In the sport of triathlon, impairments in running economy are frequently observed after cycling. This impairment is related mainly to physiological stress, but an alteration in lower limb muscle coordination during running after cycling has also been observed. Muscle activity during running after cycling has yet to be fully investigated, and to date, the effect of alterations in muscle coordination on running economy is largely unknown. Stretching, which is another mode of training, may induce acute neuromuscular effects but does not appear to alter running economy.

There are also factors other than training structure that may influence running economy and neuromuscular adaptations. For example, passive interventions such as shoes and in-shoe orthoses, as well as the presence of musculoskeletal injury, may be considered important modulators of neuromuscular control and run performance. Alterations in muscle activity and running economy have been reported with different shoes and in-shoe orthoses; however, these changes appear to be subject-specific and nonsystematic. Musculoskeletal injury has been associated with modifications in lower limb neuromuscular control, which may persist well after an athlete has returned to activity. The influence of changes in neuromuscular control as a result of injury on running economy has yet to be examined thoroughly, and should be considered in future experimental design and training analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives

Barefoot running describes when individuals run without footwear. Minimalist running utilizes shoes aimed to mimic being barefoot. Although these forms of running have become increasingly popular, we still know little about how recreational runners perceive them.
Design

In-depth interviews with eight recreational runners were used to gather information about their running experiences with a focus on barefoot and minimalist running.
Methods

Interviews were analysed using a latent level thematic analysis to identify and interpret themes within the data.
Results

Although participants considered barefoot running to be ‘natural’, they also considered it to be extreme. Minimalist running did not produce such aversive reactions. ‘Support’ reassured against concerns and was seen as central in protecting vulnerable body parts and reducing impact forces, but lacked a common or clear definition. A preference for practical over academic knowledge was found. Anecdotal information was generally trusted, as were running stores with gait assessment, but not health professionals.
Conclusion

People often have inconsistent ideas about barefoot and minimalist running, which are often formed by potentially biased sources, which may lead people to make poor decisions about barefoot and minimalist running. It is important to provide high-quality information to enable better decisions to be made about barefoot and minimalist running.

Statement of contribution

What is already known on this subject?
There is no known work on the psychology behind barefoot and minimalist running. We believe our study is the first qualitative study to have investigated views of this increasingly popular form of running.
What does this study add?
The results suggest that although barefoot running is considered ‘natural’, it is also considered ‘extreme’. Minimalist running, however, did not receive such aversive reactions.
‘Support’ was a common concern among runners. Although ‘support’ reassured against concerns and was seen as central in protecting vulnerable body parts and reducing impact forces, it lacked a common or clear definition.
A preference for practical over academic knowledge was found. Anecdotal information was generally trusted, as were running stores with gait assessment, but not health professionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the lead article for an issue of M/C Journal on the theme ‘obsolete.’ It uses the history of the International Journal of Cultural Studies (of which the author has been editor since 1997) to investigate technological innovations and their scholarly implications in academic journal publishing; in particular the obsolescence of the print form. Print-based elements like cover-design, the running order of articles, special issues, refereeing and the reading experience are all rendered obsolete with the growth of online access to individual articles. The paper argues that individuation of reading choices may be accompanied by less welcome tendencies, such as a decline in collegiality, disciplinary innovation, and trust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Comprehensive Australian Study of Entrepreneurial Emergence (CAUSEE) is the largest study of new firm formation that has ever been undertaken in Australia. CAUSEE follows the development of several samples of new and emerging firms over time. In this report we focus on the drivers of outcomes – in terms of reaching an operational stage vs. terminating the effort – of 493 randomly selected nascent firms whose founders have been comprehensively interviewed on two occasions, 12 months apart. We investigate the outcome effects of three groups of variables: Characteristics of the Venture; Resources Used in the Start-Up Process and Characteristics of the Start-Up Process Itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method which aims at increasing the efficiency of enterprise system implementations. First, we argue that existing process modeling languages that feature different degrees of abstraction for different user groups exist and are used for different purposes which makes it necessary to integrate them. We describe how to do this using the meta models of the involved languages. Second, we argue that an integrated process model based on the integrated meta model needs to be configurable and elaborate on the enabling mechanisms. We introduce a business example using SAP modeling techniques to illustrate the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate speed regulation during overground running on undulating terrain. Methods: Following an initial laboratory session to calculate physiological thresholds, eight experienced runners completed a spontaneously paced time trial over 3 laps of an outdoor course involving uphill, downhill and level sections. A portable gas analyser, GPS receiver and activity monitor were used to collect physiological, speed and stride frequency data. Results: Participants ran 23% slower on uphills and 13.8% faster on downhills compared with level sections. Speeds on level sections were significantly different for 78.4 ± 7.0 seconds following an uphill and 23.6 ± 2.2 seconds following a downhill. Speed changes were primarily regulated by stride length which was 20.5% shorter uphill and 16.2% longer downhill, while stride frequency was relatively stable. Oxygen consumption averaged 100.4% of runner’s individual ventilatory thresholds on uphills, 78.9% on downhills and 89.3% on level sections. 89% of group level speed was predicted using a modified gradient factor. Individuals adopted distinct pacing strategies, both across laps and as a function of gradient. Conclusions: Speed was best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption (VO2) limited runner’s speeds only on uphill sections, and was maintained in line with individual ventilatory thresholds. Running speed showed larger individual variation on downhill sections, while speed on the level was systematically influenced by the preceding gradient. Runners who varied their pace more as a function of gradient showed a more consistent level of oxygen consumption. These results suggest that optimising time on the level sections after hills offers the greatest potential to minimise overall time when running over undulating terrain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis aimed to investigate the way in which distance runners modulate their speed in an effort to understand the key processes and determinants of speed selection when encountering hills in natural outdoor environments. One factor which has limited the expansion of knowledge in this area has been a reliance on the motorized treadmill which constrains runners to constant speeds and gradients and only linear paths. Conversely, limits in the portability or storage capacity of available technology have restricted field research to brief durations and level courses. Therefore another aim of this thesis was to evaluate the capacity of lightweight, portable technology to measure running speed in outdoor undulating terrain. The first study of this thesis assessed the validity of a non-differential GPS to measure speed, displacement and position during human locomotion. Three healthy participants walked and ran over straight and curved courses for 59 and 34 trials respectively. A non-differential GPS receiver provided speed data by Doppler Shift and change in GPS position over time, which were compared with actual speeds determined by chronometry. Displacement data from the GPS were compared with a surveyed 100m section, while static positions were collected for 1 hour and compared with the known geodetic point. GPS speed values on the straight course were found to be closely correlated with actual speeds (Doppler shift: r = 0.9994, p < 0.001, Δ GPS position/time: r = 0.9984, p < 0.001). Actual speed errors were lowest using the Doppler shift method (90.8% of values within ± 0.1 m.sec -1). Speed was slightly underestimated on a curved path, though still highly correlated with actual speed (Doppler shift: r = 0.9985, p < 0.001, Δ GPS distance/time: r = 0.9973, p < 0.001). Distance measured by GPS was 100.46 ± 0.49m, while 86.5% of static points were within 1.5m of the actual geodetic point (mean error: 1.08 ± 0.34m, range 0.69-2.10m). Non-differential GPS demonstrated a highly accurate estimation of speed across a wide range of human locomotion velocities using only the raw signal data with a minimal decrease in accuracy around bends. This high level of resolution was matched by accurate displacement and position data. Coupled with reduced size, cost and ease of use, the use of a non-differential receiver offers a valid alternative to differential GPS in the study of overground locomotion. The second study of this dissertation examined speed regulation during overground running on a hilly course. Following an initial laboratory session to calculate physiological thresholds (VO2 max and ventilatory thresholds), eight experienced long distance runners completed a self- paced time trial over three laps of an outdoor course involving uphill, downhill and level sections. A portable gas analyser, GPS receiver and activity monitor were used to collect physiological, speed and stride frequency data. Participants ran 23% slower on uphills and 13.8% faster on downhills compared with level sections. Speeds on level sections were significantly different for 78.4 ± 7.0 seconds following an uphill and 23.6 ± 2.2 seconds following a downhill. Speed changes were primarily regulated by stride length which was 20.5% shorter uphill and 16.2% longer downhill, while stride frequency was relatively stable. Oxygen consumption averaged 100.4% of runner’s individual ventilatory thresholds on uphills, 78.9% on downhills and 89.3% on level sections. Group level speed was highly predicted using a modified gradient factor (r2 = 0.89). Individuals adopted distinct pacing strategies, both across laps and as a function of gradient. Speed was best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption (VO2) limited runner’s speeds only on uphill sections, and was maintained in line with individual ventilatory thresholds. Running speed showed larger individual variation on downhill sections, while speed on the level was systematically influenced by the preceding gradient. Runners who varied their pace more as a function of gradient showed a more consistent level of oxygen consumption. These results suggest that optimising time on the level sections after hills offers the greatest potential to minimise overall time when running over undulating terrain. The third study of this thesis investigated the effect of implementing an individualised pacing strategy on running performance over an undulating course. Six trained distance runners completed three trials involving four laps (9968m) of an outdoor course involving uphill, downhill and level sections. The initial trial was self-paced in the absence of any temporal feedback. For the second and third field trials, runners were paced for the first three laps (7476m) according to two different regimes (Intervention or Control) by matching desired goal times for subsections within each gradient. The fourth lap (2492m) was completed without pacing. Goals for the Intervention trial were based on findings from study two using a modified gradient factor and elapsed distance to predict the time for each section. To maintain the same overall time across all paced conditions, times were proportionately adjusted according to split times from the self-paced trial. The alternative pacing strategy (Control) used the original split times from this initial trial. Five of the six runners increased their range of uphill to downhill speeds on the Intervention trial by more than 30%, but this was unsuccessful in achieving a more consistent level of oxygen consumption with only one runner showing a change of more than 10%. Group level adherence to the Intervention strategy was lowest on downhill sections. Three runners successfully adhered to the Intervention pacing strategy which was gauged by a low Root Mean Square error across subsections and gradients. Of these three, the two who had the largest change in uphill-downhill speeds ran their fastest overall time. This suggests that for some runners the strategy of varying speeds systematically to account for gradients and transitions may benefit race performances on courses involving hills. In summary, a non – differential receiver was found to offer highly accurate measures of speed, distance and position across the range of human locomotion speeds. Self-selected speed was found to be best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption limited runner’s speeds only on uphills, speed on the level was systematically influenced by preceding gradients, while there was a much larger individual variation on downhill sections. Individuals were found to adopt distinct but unrelated pacing strategies as a function of durations and gradients, while runners who varied pace more as a function of gradient showed a more consistent level of oxygen consumption. Finally, the implementation of an individualised pacing strategy to account for gradients and transitions greatly increased runners’ range of uphill-downhill speeds and was able to improve performance in some runners. The efficiency of various gradient-speed trade- offs and the factors limiting faster downhill speeds will however require further investigation to further improve the effectiveness of the suggested strategy.