142 resultados para rotifer Brachionus plicatilis
Resumo:
The rotifer Brachionus plicatilis plays an important role in prawn hatcheries. It tolerates a wide range of salinities. The present experiments were conducted to find the optimum salinity for its mass culture. Experiments conducted on various ranges of salinities starting from 0 to 40 ppt at an interval of 5 ppt revealed that Brachionus plicatilis did not survive at salinities 0 and 40 ppt. Optimum salinity studies conducted at 5-15 ppt with an interval of 1 ppt showed that the production of 70 individuals/ml was highest at 10 ppt salinity and the doubling time ranged from 1.728 to 1.317 days.
Resumo:
Population growth and reproductive capacity of brackishwater rotifer, Brachionus plicatilis, were evaluated, for a period of 8 days in a temperature controlled ( =25°C) microalgallaborarory, under three different algal feeding regimens. The algal species that were tested are: (i) Chlorella sp. (T1), Tetraselmis chui (T2), Nannochloropsis oculata (T 3). The feeding density of each algal species was maintained similar as of 4.5xW6 ceHs mi. The rotifer fed on T. chui showed the highest (p<0.05) population growth (131.5 ind./ml), compared to that fed on Chlorella sp (45.67 ind./ml) and N oculata (43.44 ind./ml). The abundance of egg bearing rotifers was also higher (35.77%) with T. chuithan with Chlorella sp (27.76%) and N oculara (24.60%). The results of the present study indicate that T. chui could be the most suitable algal food for the stock culture of locally isolated rotifer B. plicatilis.
Resumo:
The toxicity of seven major HAB (harmful algal bloom) species/strains, Prorocentrum donghaiense, Phaeocystis globosa, Prorocentrum micans, Alexandrium tamarense (AT-6, non-PSP producer), Alexandrium lusitanicum, Alexandrum tamarense (ATHK) and Heterosigma akashiwo were studied against rotifer Brachionus plicatilis under laboratory conditions. The results show that P. donghaiense, P. globosa, P. micans, A. tamarense (AT-6), or A. lusitanicum could maintain the individual survival and reproduction, as well as the population increase of the rotifer, but the individual reproduction would decrease when exposed to these five algae at higher densities for nine days; H. akashiwo could decrease the individual survival and reproduction, as well as population increase of the rotifer, which is similar to that of the starvation group, indicating that starvation might be its one lethal factor except for the algal toxins; A. tamarense (ATHK) has strong lethal effect on the rotifer with 48h LC50 at 800 cells/mL. The experiment on ingestion ability indicated by gut pigment change shows that P. donghaiense, P. globosa, P. micans, A. tamarense (AT-6) and A. lusitanicum can be taken by the rotifers as food, but A. tamarense (ATHK) or H. akashiwo can be ingested by the rotifers. The results indicate that all the indexes of individual survival and reproduction, population increase, gut pigment change of the rotifers are good and convenient to be used to reflect the toxicities of HAB species. Therefore, rotifer is suggested as one of the toxicity testing organisms in detecting the toxicity of harmful algae.
Resumo:
To investigate harmful effects of the dinoflagellate Alexandrium species on microzooplankton, the rotifer Brachionus plicatilis was chosen as an assay species, and tested with 10 strains of Alexandrium including one known non-PSP-producer (Alexandrium tamarense, AT-6). HPLC analysis confirmed the PSP-content of the various strains: Alexandrium lusitanicum, Alexandrium minutum and Alexandrium tamarense (ATHK, AT5-1, AT5-3, ATC102, ATC103) used in the experiment were PSP-producers. No PSP toxins were detected in the strains Alexandrium sp1, Alexandrium sp2. Exposing rotifer populations to the densities of 2000 cells ml(-1) of each of these 10 Alexandrium strains revealed that the (non-PSP) A. tarnarense (AT-6) and two other PSP-producing algae: A. lusitanicum, A. minutum, did not appear to adversely impact rotifer populations. Rotifers exposed to these three strains were able to maintain their population numbers, and in some cases, increase them. Although some increases in rotifer population growth following exposures to these three algal species were noted, the rate was less than for the non-exposed control rotifer groups. In contrast, the remaining seven algal strains (A. tamarense ATHK, AT5-1, AT5-3, ATC102, ATC103; also Alexandrium sp1 and Alexandrium sp2) all have adverse effects on the rotifers. Dosing rotifers with respective algal cell densities of 2000 cells ml-1 each, for Alexandrium spl, Alexandrium sp2, and A. tamarense strains ATHK and ATC103 showed mean lethal time (LT50) on rotifer populations of 21, 28, 29, and 36h, respectively. The remaining three species (A. tamarense strains AT5-1, AT5-3, ATC102) caused respective mean rotifer LT50S of 56, 56, and 71 h, compared to 160 h for the unexposed "starved control" rotifers. Experiments to determine ingestion rates for the rotifers, based on changes in their Chlorophyll a content, showed that the rotifers could feed on A. lusitanicum, A. minutum and A. tamarense strain AT-6, but could graze to little or no extent upon algal cells of the other seven strains. The effects on rotifers exposed to different cell densities, fractions, and growth phases of A. tamarense algal culture were respectively compared. It was found that only the whole algal cells had lethal effects, with strongest impact being shown by the early exponential growth phase of A. tamarense. The results indicate that some toxic mechanism(s), other than PSP and present in whole algal cells, might be responsible for the adverse effects on the exposed rotifers. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Possibility of enrichment of rotifer (Brachionus rotondiformis) with calcium (Ca) for feeding the fish fry was investigated. Rotifer was kept for 24 h with aeration in normal seawater (Treatment 1), seawater with 400 mg/l supplemental Ca from Ca-lactate (Treatment 2) and seawater with 400 mg/l supplemental Ca from Ca-chloride (Treatment 3). After the experimental period, Ca contents of rotifer were 0.20, 0.29 and 0.39% of dry weight in T-1, T-2 and T-3, respectively. Ca content of media did not affect phosphorus, zinc and manganese contents of rotifer. Results revealed that rotifer can be enriched with Ca for feeding fish fry and Ca-chloride might be a better source for Ca enrichment.
Resumo:
The impacts of Prorocentrum donghaiense Lu and Alexandrium catenella Balech, causative species of the large-scale HAB in the East China Sea, were studied under laboratory conditions. According to bloom densities, the effects of monoculture and mixture of the two species were examined on the egg-hatching success of Argopecten irradians Lamarck, and the population growth of Brachionus plicatilis Muller and Moina mongolica Daday. The results showed that monoculture of A. catenella had a significant inhibition on the egg hatching success of A. irradians, and the population growth of B. plicatilis and M. mongolica. The median effective densities ( EDSo) inhibiting the egg hatching success of A. irradians for 24 h and the population growth of B. plicatilis and M. mongolica for 96 h were 800, 630, and 2 400 cells/cm(3), respectively. Monoculture of P. donghaiense has no such inhibitory effect on the egg hatching success of A. irradians; P. donghaiense at lower suitable densities could sustain the population growth of B. plicatilis (1 x 10(4) similar to 3 x 10(4)cells/cm(3)) and M. mongolica (2 x 10(4) similar to 5 x 10(4) cells/cm(3)); P. doaghaiense at higher densities had significantly adverse effect on the population growth of B. plicatilis (4 x 10(4) similar to 10 x 10(4) cells/cm(3)) and M. mongolica (10 x 10(4) cells/cm(3)). When the two algae were mixed according to bloom densities, P. donghaiense at suitable densities to some extent could decrease the toxicity of A. catenella to B. plicatilis and M. mongolica. The results indicated that the large-scale HAB in the East China Sea could have adverse effect on zooplankton, and might further influence the marine ecosystem, especially when there was also Alexandrium bloom.
Resumo:
The present study is an attempt to standardize the environmental condition like pH, salinity and photoperiod, and also the feed for the maximum production of rotifers. Considering the deficiency of essential fatty acids in rotifers, enrichment experiments were carried out and fatty acids profile were analysed. Attempts were made to improve the production of clown fish (Amphiprion sebae) juveniles using enriched rotifers. Attempts were also made to rear various larval stages of Penaeus monodon with enriched rotifers as a substitute for Artemia nauplii.
Resumo:
The studies were conducted in nine stations with varying ecological characteristics along Cochin backwaters and adjoining canals. Many workers opined that the distribution of rotifers is cosmopolitan. The significance of rotifers as first food for early larvae was indicated by Fujita. Aquaculture is a fast growing field in fisheries sector and it is gaining more importance as the fish landings and supply are getting irregular. A consistent supply of fish/shellfish can only be achieved through aquaculture. The success of any culture activity depends on the timely production of seeds of finfishes/shellfishes. The availability of wild seed is seasonal and erratic. So, a dependable source of seed of fishes and shellfishes is possible only through large scale production in hatchery. A successful seed production activity depends on the availability of a variety of suitable live feed organisms in sufficient quantities at the proper time for use in the larval stages. As the live feeds promote high growth rates, easy digestion, assimilation and the quality of not contaminating the culture water when compared to other artificial feeds, make the culture of live feed organisms the principal means of providing food for the larvae of finfishes and shellfishes. Rotifers are considered to be an excellent and indispensable food for larvae of many finfishes and crustaceans. It (1960) was the first to culture Brachionus plicatilis for feeding marine fish larvae, and now it is being extensively used as live feed in hatcheries all over the world. They are a group of microscopic organisms coming under the Phylum Rotifera which comprises of about 2000 species. Their slow swimming habits, ability to tolerate a wide range of salinities, parthenogenetic mode of reproduction and ability to get enriched easily, make rotifers an ideal live feed organism. The major factors such as temperature, salinity and food that influence the reproductive potential and thereby the population size of rotifer, Salinity is one of the most important aspect influencing the reproductive rate of rotifers. The feed type and feed concentration play a vital role in influencing the reproductive rate of rotifers. For culture of rotifers, the commonly used micro algae belong to Chlorella, Nannochloropsis, Isochrysis and Tetraselmis. While some studies have suggested that, algal diet has little effect on reproductive rates in 1979 while using the rotifer, Brachionus plicatilis as feed for the larvae of red sea bream, Pagrus major. It is generally accepted that rotifers play a pivotal role in the successful rearing of marine fish larvae.
Resumo:
Larval growth during stage I-VIII was studied in Macrobrachium rosenbergii. Duration in moult periodicity were recorded-during larval development period, larvae were fed with Brachionus (grown on Baker's yeast and also Brachinous raised through organic manuring in outdoor culture containers). The performance of the feed was evaluated through substitution of Brachionus in the feeding protocol, in lieu of Artemia 1st instar. The Artemia, Brachionus substitution ratio of 75:25 was found to be most efficient. The study also indicates that the comparative growth rate of Brachionus plicatilis is higher in manure loaded tanks than with Baker's yeast. Growth rate "Y'' in culture tank being 0.245 and 0.112 and corresponding duplicating time (Td) too was found to be 2.855 and 6.365 respectively in tanks manured/enriched with pig manure.
Resumo:
This study describes the life history characteristics of amictic, unfertilized mictic and fertilized mictic females of the rotifer Brachionus calyciflorus cultured individually on two different algae at 0.1 mg ml(-1) food concentration and 27 degreesC. The duration of the juvenile period of amictic females was significantly shorter on Chlorella pyrenoidosa Chick than on Scenedesmus obliquus Kutz or both algae together. The duration of the juvenile period of unfertilized mictic females was significantly longer, and the number of eggs produced by amictic females was significantly larger on Chlorella pyrenoidosa than on S. obliquus. When fed the same type of alga, the duration of the juvenile period of the fertilized mictic females was the longest among the three types of females, and the durations of the reproductive period of the amictic females and the post-reproductive period of the fertilized mictic females were longer than, or equal to those of the other two types of females, respectively. The number of eggs produced by an unfertilized mictic female was the largest among the three types of females, and that of amictic females was larger than or equal to that of fertilized mictic females, depending on the type of diet.