999 resultados para root volume


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coffee (Coffea arabica L.) plants were grown in small (3-L), medium (10-L) and large (24-L) pots for 115 or 165 d after transplanting (DAT), which allowed different degrees of root restriction. Effects of altered source : sink ratio were evaluated in order to explore possible stomatal and non-stomatal mechanisms of photosynthetic down-regulation. Increasing root restriction brought about large and general reductions in plant growth associated with a rising root : shoot ratio. Treatments did not affect leaf water potential or leaf nutrient status, with the exception of N content, which dropped significantly with increasing root restriction even though an adequate N supply was available. Photosynthesis was severely reduced when plants were grown in small pots; this was largely associated with non-stomatal factors, such as decreased Rubisco activity. At 165DAT contents of hexose, sucrose, and amino acids decreased in plants grown in smaller pots, while those of starch and hexose-P increased in plants grown in smaller pots. Photosynthetic rates were negatively correlated with the ratio of hexose to free amino acids, but not with hexose content. Activities of acid invertase, sucrose synthase, sucrose-P synthase, fructose-1,6- bisphosphatase, ADP-glucose pyrophosphorylase, starch phosphorylase, glyceraldehyde-3-P dehydrogenase, PPi : fructose-6-P 1-phosphotransferase and NADP : glyceraldehyde-3-P dehydrogenase all decreased with severe root restriction. Glycerate-3-P : Pi and glucose-6-P : fructose-6-P ratios decreased accordingly. Photosynthetic down-regulation was unlikely to have been associated directly with an end-product limitation, but rather with decreases in Rubisco. Such a down-regulation was largely a result of N deficiency caused by growing coffee plants in small pots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil compaction reduces root growth, affecting the yield, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in greenhouses are necessary to develop mechanisms which alleviate soil compaction problems. The selection of three distinct bulk densities based on the Standard Proctor Test is also an important factor to determine which bulk density restricts root penetration. This experiment was conducted to evaluate cotton (Gossypium hirsutum L.) root volume and root dry matter as a function of soil bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6 g cm-3), and two levels of water content (70 and 90% of field capacity) were used. A completely randomized design with four replicates in a 3×2 factorial pattern was used. The results showed that mechanical impedance affected root volume positively with soil bulk density of 1.2 and 1.6 g cm-3, enhancing root growth (P>0.0064). Soil water content reduced root growth as root and shoot growth was higher at 70% field capacity than that at 90% field capacity. Shoot growth was not affected by the increase in soil bulk density and this result suggests that soil bulk density is not a good indicator for measuring mechanical impedance in some soils.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this work was to evaluate the root system distribution and the yield of 'Conilon' coffee (Coffea canephora) propagated by seeds or cuttings. The experiment was carried out with 2x1 m spacing, in an Oxisol with sandy clay loam texture. A randomized complete block design was used, following a 2x9x6 factorial arrangement, with two propagation methods (seeds and cuttings), nine sampling spacings (0.15, 0.30, 0.45, 0.60, 0.75, and 0.90 m between rows, and 0.15, 0.30, and 0.45 between plants within rows), six soil depths (0.10-0.20, 0.20-0.30, 0.30-0.40, 0.40-0.50, and 0.50-0.60 m), and six replicates. Soil cores (27 cm3) with roots were taken from 12 experimental units, 146 months after planting. The surface area of the root system and root diameter, length, and volume were assessed for 13 years and, then, correlated with grain yield. The highest fine root concentration occurred at the superficial soil layers. The variables used to characterize the root system did not differ between propagation methods. Moreover, no differences were observed for net photosynthetic CO2 assimilation rate, stomatal conductance, internal CO2 concentrations, and instantaneous water-use efficiency in the leaves. Cutting-propagated plants were more productive than seed-propagated ones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We examined root morphological and functional differences caused by restrictions imposed to vertical growth in the root system of holm oak (Quercus ilex L.) seedlings to assess the consequences of using nursery containers in the development of a confined root system for this species. Thus, root morphological, topological and functional parameters, including hydraulic conductance per leaf unit surface area (K $_{\rm RL})$, were investigated in one-year seedlings cultivated in three PVC tubes differing in length (20, 60 and 100 cm). Longer tubes showed greater projected root area, root volume, total and fine root lengths, specific root length (SRL) and K$_{\rm RL}$ values than did shorter tubes. On the other hand, the length of coarse roots (diameter > 4.5 mm) and the average root diameter were greater in shorter tubes. The strong positive correlation found between K$_{\rm RL}$ and SRL (r=+0.69; P<0.001) indicated that root thickness was inversely related to water flow through the root system. We concluded that root systems developed in longer tubes are more efficient for plant water uptake and, therefore, changes in root pattern produced in standard forest containers (i.e. about 20 cm length) may in fact prevent a proper establishment of the holm oak in the field, particularly in xeric environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Negative effects of soil compaction have been recognized as one of the problems restricting the root system and consequently impairing yields, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in green house studies are necessary for the development of mechanism which alleviates soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. The experiment was conducted to assess the root length density and root diameter of the corn (Zea mays L.) crop as a function of bulk density and water stress, characterized by the soil density (1.2; 1.4, and 1.6 g cm -3), and two levels of the water content, approximately (70 and 90% field capacity). The statistical design adopted was completely randomized design, with four replicates in a factorial pattern of (3 × 2). The PVC tubes were superimposed with an internal diameter of 20 cm with a height of 40 cm (the upper tube 20 cm, compacted and inferior tube 10 cm), the hardpan with different levels of soil compaction were located between 20 and 30 cm of the depth of the pot. Results showed that: the main effects of subsoil mechanical impedance were observed on the top layer indicating that the plants had to penetrate beyond the favorable soil conditions before root growth was affected from 3.16; 2.41 to 1.37 cm cm -3 (P<0.005). There was a significant difference at the hardpan layer for the two levels of water and 90% field capacity reduced the root growth from 0.91 to 0.60 cm cm -3 (P<0.005). The root length density and root diameter were affected by increasing soil bulk density from 1.2 to 1.6 g cm -3 which caused penetration resistance to increase to 1.4 MPa. Soil water content of 70% field capacity furnished better root growth in all the layers studied. The increase in root length density resulted in increased root volume. It can also be concluded that the effect of soil compaction impaired the root diameter mostly at the hardpan layer. Soil temperature had detrimental effect on the root growth mostly with higher bulk densities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT Sorghum arundinaceum (Desv.) Stapf is a weed that belongs to the Poaceae family and is widespread throughout Brazil. Despite the frequent occurrence, infesting cultivated areas, there is little research concerning the biology and physiology of this species. The objective of this research was to evaluate the growth, carbon partitioning and physiological characteristics of the weed Sorghum arundinaceum in greenhouse. Plants were collected at regular intervals of seven days, from 22 to 113 days after transplanting (DAT). In each sample, we determined plant height, root volume, leaf area and dry matter, and subsequently we perfomed the growth analysis, we have determined the dry matter partitioning among organs, the accumulation of dry matter, the specific leaf area, the relative growth rate and leaf weight ratio. At 36, 78 and 113 DAT, the photosynthetic and transpiration rates, stomatal conductance, CO2 concentration and chlorophyll fluorescence were evaluated. The Sorghum arundinaceum reached 1.91 in height, with slow initial growth and allocated much of the biomass in the roots. The photosynthetic rate and the maximum quantum yield of FSII are similar throughout the growth cycle. At maturity the Sorghum arundinaceum presents higher values of transpiration rate, stomatal conductance and non-photochemical quenching coefficient (NPQ).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immediately after planting, tree seedlings face adverse environmental and biotic stresses that must be overcome to ensure survival and to yield a desirable growth. Hardening practices in the nursery may help improve seedling stress resistance through reduction of aboveground plant tissues and increased root volume and biomass. We conducted an assay to quantify changes in the morphogenesis following application of ethephon on seedlings of Pachystroma longifolium (Ness) I. M. Johnst.during hardening. The results showed no effect of the ethephon treatments on the number of leaves but a reduction of up to 50% in seedling height increment, and an increase in stem diameter increment of up to 44% with the 600 mg L-1 ethephon treatment, which consequently altered seedling Dickson Quality Index. Our results indicate that ethephon may help to promote desired morphological changes that occur during seedling hardening in nurseries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carryove reffects of fomesafen on successional maize were studied in clay soil. Fomesafen was applied as postemergence at Five rate s (0; 0.12 5: 0.25 ; 0.37 5, and 0.5 kg/ha-1) to edible beans. Maize was planted 198 and 65 days after fomesafen application in 1992 and 212 and 65 days after fomesafen application in 1993. Fomesafen residues were detected in soils up to 20cm depth but residue concentration was higher in 0-10 cm soil depth. Fomesafen residues reduced leaf chlrophyll content and root volume of 10 days old maize when planted 65 days after application but were not affected when planted 212 days after application. However, the decreases in leaf chlorophyll and root volume did not affect the maize yield.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT Growth regulators can be used to further retard or inhibit vegetative growth. In this sense, the objective of this study was to determine the effects of age and number of trinexapac-ethyl applications on the growth and yield of sugarcane. The experiment was in a randomized complete block design with four replications. The treatments were in a 3 x 2 + 2 factorial arrangement, where factor A corresponded to the application times of the plant growth regulator (120, 200 and 240 days after bud burst (DAB) of sugarcane) and factor B to the number of applications (one or two applications). In addition, two controls (one with three applications and another application without the regulator) were added. The application of trinexapac-ethyl decreased the number and the distance between buds, height, root volume and sugarcane yield. The sequential application (2 or 3 times) induced an increase in stem diameter and three applications of the product increased the number of plant tillers. The use of growth regulators applied at 240 DAB has reduced plant height, however without changing the number of buds. It can be concluded that trinexapac-ethyl changes sugarcane growth and yield, regardless of season and number of applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soybean (Glycine max (L.) Merrill) is known to have a high ability as a potassium extractor, and different cultivars show different potassium requirements. An experiment was run to study the potassium nutrition of soybean as related to plant characteristics. Six soybean cultivars (FT-2, Bossier, IAC-11, IAC-17, IAC-18 and IAC-19) were grown in 6 kg pots filled with the topsoil of a Dark Red Latosol (sandy loam), either with and without K fertilization. The plants were harvested 70 days after emergence. Soybean response to potassium was not related to growth habit or group of maturation. There was a different response to K. The cultivars IAC-18 and FT-2 were less tolerant to K deficiency. Potassium deficiency in the leaves was not related to top dry matter production. With K fertilization soybean plants showed small root volume and higher ratio canopy/root. With high K in soil, all of the cultivars showed higher nodulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apex and basal cuttings of Lamiaceae plants (Mentha crispa L., Mentha piperita L. and Salvia officinalis L.) were submitted to rooting assay. The effects of water, H3BO3, KH2PO4, ZnSO 4 and KNO3 solutions on the formation of adventitious roots were studied in greenhouse conditions. The root morphology parameters were determined after the rooting processes. Salvia officinalis did not produce adventitious roots under the experimental conditions. Apex or basal cuttings showed similar rooting development. The root volume and length were more influencied by KNO3 and H3BO3 solutions than diameter and root surface area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV