942 resultados para root meander and curling.
Resumo:
实验室前期工作证明OsRAA1在玉米泛素启动子驱动下组成型表达,可以抑制水稻初生根的生长,促进不定根的形成,形成不同程度螺旋状的初生根,根的向地性反应减缓,这些表型和野生型水稻用生长素处理的表型类似,而且OsRAA1基因的转录受生长素诱导,这些结果表明OsRAA1可能参与了生长素的信号转导途径。但这些表型产生的机理还不是很清楚。在水稻中,茉莉酸在根发育过程中的作用多为生理实验的报道;拟南芥中的研究表明生长素信号转导和茉莉酸信号转导可能都受26S蛋白酶体的调控。由此我们推测茉莉酸在根的发育过程中可能也起着同样的促进作用。本论文在超表达OsRAA1水稻基础上旨在克隆新基因,并对新基因功能进行研究,以探讨茉莉酸在水稻根发育过程中的分子机理,并对生长素和茉莉酸信号转导的关系进行探讨。 首先运用双向电泳技术结合质谱分析技术,在超表达OsRAA1水稻背景下发现了受体激酶家族DUF26的一个成员明显下调,我们命名为OsRMC(Oryza sativa Root Meander and CurlingAAL87185),Western杂交进一步证明了这个结果。 OsRMC位于4号染色体,信息学分析表明只有一个拷贝,没有内含子,ORF阅读框为777bp,编码的蛋白分子量为27.9 kDa,等电点(pI)为5.01。对该蛋白进行同源性比较发现,其含有2个C-X8-C-X2-C基序(Cys-rich repeat, CRR)即半胱氨酸富集区,其中第四个半胱氨酸残基不保守,该基序会形成二硫键,编码两个未知功能的DUF26(Domain Unknown Function 26)结构域。OsRMC由一个信号肽和两个CRR区组成,但没有跨膜区和激酶区。RT-PCR显示OsRMC可能是组成型表达的基因;亚细胞实验表明OsRMC是膜定位的蛋白。Western blot显示OsRMC受茉莉酸诱导表达,受生长素的抑制。 RNAiOsRMC转基因水稻在暗处培养时,抑制了初生根的生长,使侧根数目减少,但促进了不定根的生长和数目的增加;第二叶鞘变短,这些表型和前人报道的外源茉莉酸处理野生型的表型一致。转基因对生长素信号转导和合成没有影响,但初生根和第二叶鞘对外源茉莉酸更加敏感,说明RNAiOsRMC转基因水稻可能增强了茉莉酸信号转导途径。分析转基因水稻的茉莉酸信号转导途径部分相关基因的表达变化,根中受茉莉酸信号转导特异诱导的病原相关基因RSOsPR10的表达明显增多,而JAmyb和OsNDPK1的表达没有变化,证实转基因增强了茉莉酸信号转导其中的一个路径;进一步分析茉莉酸合成途径12-OXO-PDA(12-氧代-顺,顺-10,15-植物二烯酸)还原酶基因OsOPR的表达发现与野生型没有明显差别,说明转基因可能没有影响体内的茉莉酸合成途径。RNAiOsRMC转基因水稻的初生根比野生型的更容易发生弯曲,实验表明培养过程中茉莉酸和背触反应(negative thigmotropism)共同作用使转基因的初生根更容易发生卷曲,而光信号会增强卷曲程度。但RNAiOsRMC转基因水稻并没有影响根的向地性,暗示RNAiOsRMC转基因可能增强了根的回旋运动或(和)背触反应,从而促进了根的弯曲和卷曲。这些结果证明OsRMC参与的茉莉酸信号转导过程在水稻根的发育、弯曲和卷曲过程中起着重要的促进作用。通过对超表达OsRAA1和RNAiOsRMC转基因水稻的分析,说明水稻中存在着生长素信号转导促进茉莉酸信号转导的途径。 综合以上实验结果认为,OsRAA1调控了受体激酶家族DUF26的一个成员OsRMC,使其表达量降低,该过程增强了茉莉酸信号转导途径;确认了受体激酶家族DUF26的基因具有重要的生物学功能,证实了OsRMC调控的茉莉酸信号转导在水稻根系发育、根弯曲和卷曲过程中具有重要的促进作用;证明水稻中存在着生长素信号转导促进茉莉酸信号转导的途径,为完善各种植物激素调控水稻根系发育的网络提供了新的实验证据。
Resumo:
The objectives of this project over a 3 years study period are: 1) validation and on-farm adoption of improved root growth and functioning for managing cotton production under limited water and nitrogen nutrition; and 2) Delivering improved understanding of enhancing root growth and functioning to about 50% cotton growers in the regions leading towards a better adaptation to future climate driven challenges, particularly limited water availability in Queensland and New South Wales. The research is expected to be supported through cash and/or in-kind contributions by CRDC and Agri-Science Queensland (DEEDI).
Resumo:
Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice.
Resumo:
Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses.
Resumo:
The mechanisms by which low temperature affects flowering and fruit set of grapevines are poorly understood, as is the specific response of the grapevine root system and inflorescence to low temperature effects that reduce fruit set. This study aimed to determine the responses of the root system and inflorescence of the grapevine 'Chardonnay' to low temperature (10 degrees C) during flowering, and considered the possible mechanisms of low temperature effects on those parts. Temperature treatments of 10 degrees C or 20 degrees C were imposed to potted 'Chardonnay' grapevines in a glasshouse for up to two weeks during the early stages of flowering. When the root system alone was exposed to 10 degrees C (with the rest of the plant at 20 degrees C) during flowering, the number of attached berries and percentage fruit set were significantly reduced by 50 % than when the root system alone was exposed to 20 degrees C. Whereas, exposure of the inflorescence alone to 10 degrees C (with the rest of the plant at 20 degrees C) delayed flowering, allowed rachis to grow longer, and increased both the number of attached berries (from 22 to 62 per vine) and fruit set (from 8 % to, 20 %), than when the inflorescence alone was exposed to 20 degrees C. This study will enhance our understanding of the possible mechanisms of low temperature effects on grapevine fruit set and productivity.
Resumo:
With potential to accumulate substantial amounts of above-ground biomass, at maturity an irrigated cotton crop can have taken up more than 20 kg/ha phosphorus and often more than 200 kg/ha of potassium. Despite the size of plant accumulation of P and K, recovery of applied P and K fertilisers by the crop in our field experiment program has poor. Processing large amounts of mature cotton plant material to provide a representative sample for chemical analysis has not been without its challenges, but the questions regarding mechanism of where, how and when the plant is acquiring immobile nutrients remain. Dry matter measured early in the growing season (squaring, first white flower) have demonstrated a 50% increase in crop biomass to applied P (in particular), but it represents only 20% of the total P accumulation by the plant. By first open boll (and onwards), no response in dry matter or P concentration could be detected to P application. A glasshouse study indicated P recovery was greater (to FOB) where it was completely mixed through a profile as opposed to a banded application method suggesting cotton prefers a more diffuse distribution. The relative effects of root morphology, mycorrhizal fungi infection, seasonal growth patterns and how irrigation is applied are areas for future investigation on how, when and where cotton acquires immobile nutrients.
Resumo:
A series expansion for Heckman-Opdam hypergeometric functions phi(lambda) is obtained for all lambda is an element of alpha(C)*. As a consequence, estimates for phi(lambda) away from the walls of a Weyl chamber are established. We also characterize the bounded hypergeometric functions and thus prove an analogue of the celebrated theorem of Helgason and Johnson on the bounded spherical functions on a Riemannian symmetric space of the noncompact type. The L-P-theory for the hypergeometric Fourier transform is developed for 0 < p < 2. In particular, an inversion formula is proved when 1 <= p < 2. (C) 2013 Elsevier Inc. All rights reserved.