955 resultados para root data
Resumo:
We develop some new techniques to calculate the Schur indicator for self-dual irreducible Langlands quotients of the principal series representations. Using these techniques we derive some new formulas for the Schur indicator and the real-quaternionic indicator. We make progress towards developing an algorithm to decide whether or not two root data are isomorphic. When the derived group has cyclic center, we solve the isomorphism problem completely. An immediate consequence is a clean and precise classification theorem for connected complex reductive groups whose derived groups have cyclic center.
Resumo:
With the CERN LHC program underway, there has been an acceleration of data growth in the High Energy Physics (HEP) field and the usage of Machine Learning (ML) in HEP will be critical during the HL-LHC program when the data that will be produced will reach the exascale. ML techniques have been successfully used in many areas of HEP nevertheless, the development of a ML project and its implementation for production use is a highly time-consuming task and requires specific skills. Complicating this scenario is the fact that HEP data is stored in ROOT data format, which is mostly unknown outside of the HEP community. The work presented in this thesis is focused on the development of a ML as a Service (MLaaS) solution for HEP, aiming to provide a cloud service that allows HEP users to run ML pipelines via HTTP calls. These pipelines are executed by using the MLaaS4HEP framework, which allows reading data, processing data, and training ML models directly using ROOT files of arbitrary size from local or distributed data sources. Such a solution provides HEP users non-expert in ML with a tool that allows them to apply ML techniques in their analyses in a streamlined manner. Over the years the MLaaS4HEP framework has been developed, validated, and tested and new features have been added. A first MLaaS solution has been developed by automatizing the deployment of a platform equipped with the MLaaS4HEP framework. Then, a service with APIs has been developed, so that a user after being authenticated and authorized can submit MLaaS4HEP workflows producing trained ML models ready for the inference phase. A working prototype of this service is currently running on a virtual machine of INFN-Cloud and is compliant to be added to the INFN Cloud portfolio of services.
Resumo:
We use historical data that cover more than one century on real GDP for industrial countries and employ the Pesaran panel unit root test that allows for cross-sectional dependence to test for a unit root on real GDP. We find strong evidence against the unit root null. Our results are robust to the chosen group of countries and the sample period. Key words: real GDP stationarity, cross-sectional dependence, CIPS test. JEL Classification: C23, E32
Resumo:
Several unit root tests in panel data have recently been proposed. The test developed by Harris and Tzavalis (1999 JoE) performs particularly well when the time dimension is moderate in relation to the cross-section dimension. However, in common with the traditional tests designed for the unidimensional case, it was found to perform poorly when there is a structural break in the time series under the alternative. Here we derive the asymptotic distribution of the test allowing for a shift in the mean, and assess the small sample performance. We apply this new test to show how the hypothesis of (perfect) hysteresis in Spanish unemployment is rejected in favour of the alternative of the natural unemployment rate, when the possibility of a change in the latter is considered.
Resumo:
Several unit root tests in panel data have recently been proposed. The test developed by Harris and Tzavalis (1999 JoE) performs particularly well when the time dimension is moderate in relation to the cross-section dimension. However, in common with the traditional tests designed for the unidimensional case, it was found to perform poorly when there is a structural break in the time series under the alternative. Here we derive the asymptotic distribution of the test allowing for a shift in the mean, and assess the small sample performance. We apply this new test to show how the hypothesis of (perfect) hysteresis in Spanish unemployment is rejected in favour of the alternative of the natural unemployment rate, when the possibility of a change in the latter is considered.
Resumo:
Field-based soil moisture measurements are cumbersome. Thus, remote sensing techniques are needed because allows field and landscape-scale mapping of soil moisture depth-averaged through the root zone of existing vegetation. The objective of the study was to evaluate the accuracy of an empirical relationship to calculate soil moisture from remote sensing data of irrigated soils of the Apodi Plateau, in the Brazilian semiarid region. The empirical relationship had previously been tested for irrigated soils in Mexico, Egypt, and Pakistan, with promising results. In this study, the relationship was evaluated from experimental data collected from a cotton field. The experiment was carried out in an area of 5 ha with irrigated cotton. The energy balance and evaporative fraction (Λ) were measured by the Bowen ratio method. Soil moisture (θ) data were collected using a PR2 - Profile Probe (Delta-T Devices Ltd). The empirical relationship was tested using experimentally collected Λ and θ values and was applied using the Λ values obtained from the Surface Energy Balance Algorithm for Land (SEBAL) and three TM - Landsat 5 images. There was a close correlation between measured and estimated θ values (p<0.05, R² = 0.84) and there were no significant differences according to the Student t-test (p<0.01). The statistical analyses showed that the empirical relationship can be applied to estimate the root-zone soil moisture of irrigated soils, i.e. when the evaporative fraction is greater than 0.45.
Resumo:
This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.
Resumo:
Background and Aims Forest trees directly contribute to carbon cycling in forest soils through the turnover of their fine roots. In this study we aimed to calculate root turnover rates of common European forest tree species and to compare them with most frequently published values. Methods We compiled available European data and applied various turnover rate calculation methods to the resulting database. We used Decision Matrix and Maximum-Minimum formula as suggested in the literature. Results Mean turnover rates obtained by the combination of sequential coring and Decision Matrix were 0.86 yr−1 for Fagus sylvatica and 0.88 yr−1 for Picea abies when maximum biomass data were used for the calculation, and 1.11 yr−1 for both species when mean biomass data were used. Using mean biomass rather than maximum resulted in about 30 % higher values of root turnover. Using the Decision Matrix to calculate turnover rate doubled the rates when compared to the Maximum-Minimum formula. The Decision Matrix, however, makes use of more input information than the Maximum-Minimum formula. Conclusions We propose that calculations using the Decision Matrix with mean biomass give the most reliable estimates of root turnover rates in European forests and should preferentially be used in models and C reporting.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A data sample corresponding to an integrated luminosity of 2.1 fb(-1) collected by the D phi detector at the Fermilab Tevatron Collider was analyzed to search for squarks and gluinos produced in p (p) over bar collisions at a center-of-mass energy of 1.96 TeV. No evidence for the production of such particles was observed in topologies involving jets and missing transverse energy, and 95% C.L. lower limits of 379 GeV and 308 GeV were set on the squark and gluino masses, respectively, within the framework of minimal supergravity with tan beta = 3, A(0) = 0, and mu < 0. The corresponding previous limits are improved by 54 GeV and 67 GeV. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We search for decays of Kaluza-Klein excitations of the graviton in the Randall-Sundrum model of extra dimensions to e(+)e(-) and gamma gamma in 1 fb(-1) of p (p) over bar collisions at root s=1.96 TeV collected by the D0 detector at the Fermilab Tevatron. We set 95% confidence level upper limits on the production cross section times branching fraction, which translate into lower limits on the mass of the lightest excitation between 300 and 900 GeV for values of the coupling k/(M) over bar (P1) between 0.01 and 0.1.
Resumo:
We search for decays of Kaluza-Klein excitations of the graviton in the Randall-Sundrum model of extra dimensions to e+e- and in 1 fb-1 of pp collisions at s=1.96 TeV collected by the D0 detector at the Fermilab Tevatron. We set 95% confidence level upper limits on the production cross section times branching fraction, which translate into lower limits on the mass of the lightest excitation between 300 and 900 GeV for values of the coupling k/M Pl between 0.01 and 0.1. © 2008 The American Physical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)