968 resultados para road traffic noise
Why do users care about their noise emissions? Explaining the intention to reduce road traffic noise
Resumo:
Strengthening car drivers’ intention to prevent road-traffic noise is a first step toward noise abatement through voluntary change of behavior. We analyzed predictors of this intention based on the norm activation model (i.e., personal norm, problem awareness, awareness of consequences, social norm, and value orientations). Moreover, we studied the effects of noise exposure, noise sensitivity, and noise annoyance on problem awareness. Data came from 1,002 car drivers who participated in a two-wave longitudinal survey over 4 months. Personal norm had a large prospective effect on intention, even when the previous level of intention was controlled for, and mediated the effect of all other variables on intention. Almost 60% of variance in personal norm was explained by problem awareness, social norm, and biospheric value orientation. The effects of noise sensitivity and noise exposure on problem awareness were small and mediated by noise annoyance. We propose four communication strategies for strengthening the intention to prevent road-traffic noise in car drivers.
Resumo:
El ruido del tráfico rodado supone aproximadamente la mitad del ruido global ambiental. Las técnicas de control de ruido habitual en emisión (límites de emisión de vehículos) e inmisión (barreras acústicas, doble acristalamiento) no han sido suficientes para disminuir significativamente las molestias por el tráfico rodado en las últimas tres décadas. El efecto positivo de estas técnicas de control ha sido contrarrestado por el aumento de la densidad del tráfico. Por otra parte, la molestia del ruido del tráfico está altamente correlacionada con los niveles máximos de ruido (MNL), producidos por lo general por conductores agresivos. Sin embargo, los sistemas actuales de medición de ruido de tráfico se basan en una valoración global, por lo que no son capaces de discriminar entre los conductores silenciosos y ruidosos. Por lo tanto, en esta tesis se propone un sistema de medida de ruido en el campo cercano, que es capaz de medir la contribución de cada vehículo individual al ruido del tráfico rodado, permitiendo la detección de los conductores ruidosos. Este trabajo describe también una combinación de investigaciones analíticas y experimentales para la identificación de los conductores responsables de la generación de niveles máximos de ruido. El sistema se basa en dos micrófonos embarcados, uno para el ruido del motor y otro para el ruido de rodadura. Con el fin de relacionar estas mediciones de campo cercano con el ruido de los vehículos radiado al campo lejano, se desarrolla un procedimiento completo para la extrapolación del ruido medido por los micrófonos de campo próximo a las posiciones de campo lejano, usando una combinación de predicción analítica y mediciones experimentales. Las correcciones para los niveles extrapolados se deben a factores atmosféricos, al término de divergencia esférica y a las condiciones de absorción de la superficie de propagación. Para el micrófono situado próximo al motor, es necesario también caracterizar las propiedades acústicas del capó del motor. Ambos niveles de ruido se extrapolan de forma independiente a la posición de campo lejano, donde se realiza una comparación entre la predicción y mediciones para confirmar que la metodología es fiable para estimar el impacto a distancia del ruido de tráfico
Resumo:
Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.
Resumo:
General measures of reaction to noise, which assess the respondent's perceived affectedness or dissatisfaction, appear to be more valid and internally consistent than more narrow measures, such as specific assessment of noise annoyance. However, the test-retest reliability of general and specific measures has yet to be compared. As a part of the large-scale Sydney Airport Health Study, 97 respondents participated in the same interview twice, several weeks apart. Test-retest reliabilities were found to be significant (p
Resumo:
Negative impacts of noise exposure on health and performance may result in part from learned helplessness, the syndrome of deficits typically produced by exposure to uncontrollable events. People may perceive environmental noise to be uncontrollable, and several effects of noise exposure appear to parallel learned helplessness deficits. In the present socioacoustic survey (N = 1,015), perceived control over aircraft noise correlated negatively with some effects of noise (though not others). Furthermore, these effects were better predicted by perceived control than by noise level. These observational data support the claim that learned helplessness contributes to the effects of noise exposure.
Resumo:
This paper aims to assess the impact of environmental noise in the vicinity of primary schools and to analyze its influence in the workplace and in student performance through perceptions and objective evaluation. The subjective evaluation consisted of the application of questionnaires to students and teachers, and the objective assessment consisted of measuring in situ noise levels. The survey covered nine classes located in three primary schools. Statistical Package for Social Sciences was used for data processing and to draw conclusions. Additionally, the relationship of the difference between environmental and background noise levels of each classroom and students with difficulties in hearing the teacherâ s voice was examined. Noise levels in front of the school, the schoolyard, and the most noise-exposed classrooms (occupied and unoccupied) were measured. Indoor noise levels were much higher than World Health Organization (WHO) recommended values: LAeq,30min averaged 70.5 dB(A) in occupied classrooms, and 38.6 dB(A) in unoccupied ones. Measurements of indoor and outdoor noise suggest that noise from the outside (road, schoolyard) affects the background noise level in classrooms but in varying degrees. It was concluded that the façades most exposed to road traffic noise are subjected to values higher than 55.0 dB(A), and noise levels inside the classrooms are mainly due to the schoolyard, students, and the road traffic. The difference between background (LA95,30min) and the equivalent noise levels (LAeq,30min) in occupied classrooms was 19.2 dB(A), which shows that studentsâ activities are a significant source of classroom noise.
Resumo:
Swiss laboratories performing toxicological road traffic analyses have been authorized for many years by the Swiss Federal Roads Office (FEDRO). In 2003 FEDRO signed a contract with the Swiss Society of Legal Medicine (SSLM) to organize the complete quality management concerning road traffic analyses. For this purpose a multidisciplinary working group was established under the name of "road traffic commission (RTC)". RTC has to organize external quality control, to interpret the results of these controls, to perform audits in the laboratories and to report all results to FEDRO. Furthermore the working group can be mandated for special tasks by FEDRO. As an independent organization the Swiss Center for Quality Control (CSCQ) in Geneva manages the external quality controls in the laboratory over the past years. All tested drugs and psychoactive substances are listed in a federal instruction. The so-called 'zero tolerance substances' (THC, morphine, cocaine, amphetamine, methamphetamine, MDMA and MDEA) and their metabolites have to be tested once a year, all other substances (benzodiazepines, zolpidem, phenobarbital, etc.) periodically. Results over the last years show that all laboratories are generally within the confidence interval of +/-30% of the mean value. In cases of non-conformities measures have to be taken immediately and reported to the working group. External audits are performed triennially but accredited laboratories can combine this audit with the approval of the Swiss Accreditation Service (SAS). During the audits a special checklist filled in by the laboratory director is assessed. Non-conformities have to be corrected. During the process of establishing a new legislation, RTC had an opportunity of advising FEDRO. In collaboration with FEDRO, RTC and hence SSLM can work actively on improving of quality assurance in road traffic toxicological analyses, and has an opportunity to bring its professional requests to the federal authorities.