823 resultados para rim of fire


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings are exposed to elevated temperatures. Hence after such events there is a need to determine the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel members. This research is aimed at investigating the residual distortional buckling capacities of fire exposed cold-formed steel lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperature before they were tested to failure. Suitable finite element models of tested columns were also developed and validated using test results. The residual compression capacities of tested columns were predicted using the ambient temperature cold-formed steel design rules (AS/NZS 4600, AISI S100 and Direct Strength Method). Post-fire mechanical properties obtained from a previous study were used in this study. Comparison of results showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of buildings after fire events. This paper presents the details of these experimental and numerical studies and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings will be exposed to elevated temperatures. Hence after such events there is a need to evaluate the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This means conservative decisions are often made in relation to fire exposed building structures. This research is aimed at investigating the buckling capacities of fire exposed cold-formed lipped channel steel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperatures before they were tested to failure. Similarly tensile coupon tests were also undertaken after being exposed to various elevated temperatures, from which the residual mechanical properties (yield stress and Young’s modulus) of the steels used in this study were derived. Using these mechanical properties, the residual compression capacities of tested short columns were predicted using the currently used design rules in AS/NZS 4600 and AISI cold-formed steel standards. This comparison showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of fire exposed buildings. This paper presents the details of this experimental study and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings can be exposed to elevated temperatures. Hence after such events there is a need to evaluate their residual strengths. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This research is aimed at investigating the distortional buckling capacities of fire exposed cold-formed lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC, and then tested to failure after cooling down. Suitable finite element models were developed with post-fire mechanical properties to simulate the behaviour of tested columns and were validated using test results. The residual compression capacities of short columns were also predicted using the current cold-formed steel standards and compared with test and finite element analysis results. This comparison showed that ambient temperature design rules for columns can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the column can be estimated after a fire event. Such residual capacity assessments will allow engineers to evaluate the safety of fire exposed buildings. This paper presents the details of this experimental study, finite element analyses and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Youth misuse of fire is a substantive community concern. Despite evidence which indicates youths account for a significant proportion of all deliberately lit fires within Australia, an absence of up-to-date, contextually specific research means the exact scope and magnitude of youth misuse of fire within Australia remains unknown. Despite research suggesting com- monalities exist between youth misuse of fire and juvenile offending more broadly, misuse of fire is rarely explained using criminological theory. In light of this gap, a descriptive analysis of youth misuse of fire within New South Wales was performed. Routine Activity Theory and Crime Pattern Theory were tested to explain differences in misuse of fire across age groups. Results suggest these environmental theories offer useful frameworks for explaining youth misuse of fire in New South Wales. It is argued that the Routine Activity Theory and Crime Pattern Theory can be employed to better inform youth misuse of fire policy and prevention efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique is described for calculating the brightness of the atmosphere of the Earth that shines into the Earth’s umbra during a total lunar eclipse making the Moon red. This ‘Rim of Fire’ is due to refracted un scattered light from all the sunrises and sunsets rimming the Earth. In this article, a photograph of the totally eclipsed Moon was compared with the Full Moon and the difference in brightness calculated taking into account the exposure time and ISO setting. The results show that the Full Moon is over 14 000 times brighter than the totally eclipsed Moon. The relative brightness of the eclipsed Moon can be used to estimate that the luminance of Rim of Fire is over 12 trillion watts. The experiment described in this paper would be suitable as a high school or university exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire is an important driver of nutrient cycling in savannas. Here, we determined the impact of fire frequency on total and soluble soil nitrogen (N) pools in tropical savanna. The study sites consisted of 1-ha experimental plots near Darwin, Australia, which remained unburnt for at least 14 years or were burnt at 1-, 2- or 5-year intervals over the past 6 years. Soil was analysed from patches underneath tree canopies and in inter-canopy patches at 1, 12, 28, 55 and 152 days after fire. Patch type had a significant effect on all soil N pools, with greater concentrations of total and soluble (nitrate, ammonium, amino acids) N under tree canopies than inter-canopy patches. The time since the last fire had no significant effect on N pools. Fire frequency similarly did not affect total soil N but it did influence soluble soil N. Soil amino acids were most prominent in burnt savanna, ammonium was highest in infrequently burnt (5-year interval) savanna and nitrate was highest in unburnt savanna. We suggest that the main effect of fire on soil N relations occurs indirectly through altered tree-grass dynamics. Previous studies have shown that high fire frequencies reduce tree cover by lowering recruitment and increasing mortality. Our findings suggest that these changes in tree cover could result in a 30% reduction in total soil N and 1060% reductions in soluble N pools. This finding is consistent with studies from savannas globally, providing further evidence for a general theory of patchiness as a key driver of nutrient cycling in the savanna biome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital image

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Though knowledge of fire occurrence and weather pattern relationships has been used for many years by land managers in, for instance, prescribed fire planning, understanding of the relationship between Holocene climates and fire is just beginning to be investigated. We are investigating this relationship in a major mountain range in California, examining charcoal and pollen content in sediments of montane meadows to compare paleo-fire and paleo-vegetation (thus, climate) sequences for the Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present some early work concerned with the development of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modelling and represents an extension of this technique to situations involving the combustion of solid cellulosic hels A simple solid &el combustion model consisting of a thermal pyrolysis model, a six flux radiation model and an eddydissipation model for gaseous combustion have been developed and implemented within the CFD code CFDS-FLOW3D The model is briefly described and demonstrated through two applications involving fire spread in a compartment with a plywood lined ceiling. The two scenarios considered involve a fire in an open and closed compartment The model is shown to be able to qualitatively predict behaviours similar to flashover - in the case of the open room - and backdrafl - in the case of the initially closed room.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An integrated fire spread model is presented in this study including several sub-models representing different phenomena of gaseous and solid combustion. The integrated model comprises of the following sub-models: a gaseous combustion model, a thermal radiation model that includes the effects of soot, and a pyrolysis model for charring combustible solids. The interaction of the gaseous and solid phases are linked together through the boundary conditions of the governing equations for the flow domain and the solid region respectively. The integrated model is used to simulate a fire spread experiment conducted in a half-scale test compartment. Good qualitative and reasonable quantitative agreement is achieved between the experiment and numerical predictions.