281 resultados para rhombus
Resumo:
We study planar central configurations of the five-body problem where three of the bodies are collinear, forming an Euler central configuration of the three-body problem, and the two other bodies together with the collinear configuration are in the same plane. The problem considered here assumes certain symmetries. From the three bodies in the collinear configuration, the two bodies at the extremities have equal masses and the third one is at the middle point between the two. The fourth and fifth bodies are placed in a symmetric way: either with respect to the line containing the three bodies, or with respect to the middle body in the collinear configuration, or with respect to the perpendicular bisector of the segment containing the three bodies. The possible stacked five-body central configurations satisfying these types of symmetries are: a rhombus with four masses at the vertices and a fifth mass in the center, and a trapezoid with four masses at the vertices and a fifth mass at the midpoint of one of the parallel sides.
Resumo:
We prove the existence of infinitely many symmetric periodic orbits for a regularized rhomboidal five-body problem with four small masses placed at the vertices of a rhombus centered in the fifth mass. The main tool for proving the existence of such periodic orbits is the analytic continuation method of Poincaré together with the symmetries of the problem. © 2006 American Institute of Physics.
Resumo:
Monte Carlo Simulations were carried out using a nearest neighbour ferromagnetic XYmodel, on both 2-D and 3-D quasi-periodic lattices. In the case of 2-D, both the unfrustrated and frustrated XV-model were studied. For the unfrustrated 2-D XV-model, we have examined the magnetization, specific heat, linear susceptibility, helicity modulus and the derivative of the helicity modulus with respect to inverse temperature. The behaviour of all these quatities point to a Kosterlitz-Thouless transition occuring in temperature range Te == (1.0 -1.05) JlkB and with critical exponents that are consistent with previous results (obtained for crystalline lattices) . However, in the frustrated case, analysis of the spin glass susceptibility and EdwardsAnderson order parameter, in addition to the magnetization, specific heat and linear susceptibility, support a spin glass transition. In the case where the 'thin' rhombus is fully frustrated, a freezing transition occurs at Tf == 0.137 JlkB , which contradicts previous work suggesting the critical dimension of spin glasses to be de > 2 . In the 3-D systems, examination of the magnetization, specific heat and linear susceptibility reveal a conventional second order phase transition. Through a cumulant analysis and finite size scaling, a critical temperature of Te == (2.292 ± 0.003) JI kB and critical exponents of 0:' == 0.03 ± 0.03, f3 == 0.30 ± 0.01 and I == 1.31 ± 0.02 have been obtained.
Resumo:
A double minimum six-dimensional Potential energy surface (PES) is determined in symmetry coordinates for the most stable rhombic (D-2h) B-4 isomer in its (1)A(g) electronic ground state by fitting to energies calculated ab initio. The PES exhibits a barrier to the D-4h square structure of 255 cm(-1). The vibrational levels (J=0) are calculated variationally using an approach which involves the Watson kinetic energy operator expressed in normal coordinates. The pattern of about 65 vibrational levels up to 1600 cm-1 for all stable isotopomers is analyzed. Analogous to the inversion in ammonia-like molecules, the rhombus rearrangements lead to splittings of the vibrational levels. In B-4 it is the B-1g (D-4h mode which distorts the square molecule to its planar rhombic form. The anharmonic fundamental vibrational transitions of B-11(4) are calculated to be (splittings in parentheses): G(O) = 2352(22) cm(-1), v(1)(A(1g)) - 1136(24) cm(-1,) v(2)(B-1g)=209(144) cm(-1) v(3)(B-2g)=1198(19)cm(-1), v(4)(B-2u) = 271(24) cm(-1), and v(5) (E-u) = 1030( 166) cm(-1) (D-4h notation). Their variations in all stable isotoporners were investigated. Due to the presence of strong anharmonic resonances between the B-1g in-plane distortion and the B-2u, out-of-plane bending modes. the hiaher overtones and combination levels are difficult to assign unequivocally. (C) 2005 American Institute of Physics.
Resumo:
The temperature dependence of anion ordering in the skutterudites CoGe1.5Q1.5 (Q=S, Te) has been investigated by powder neutron diffraction. Both materials adopt a rhombohedral structure at room temperature (space group R-3 ) in which the anions are ordered trans to each other within Ge2Q2 rings. In CoGe1.5S1.5, anion ordering is preserved up to the melting point of 950 °C. However, rhombohedral CoGe1.5Te1.5 undergoes a phase transition at 610 °C involving a change to cubic symmetry (space group Im-3). In the high-temperature modification, there is a statistical distribution of anions over the available sites within the Ge2Te2 rings. The structural transition involves a reduction in the degree of distortion of the Ge2Te2 rings which progressively transform from a rhombus to a rectangular shape. The effect of this transition on the thermoelectric properties has been investigated.
Resumo:
Cerium carbonate hydroxide (orthorhombic Ce(OH)CO3) hexagonal-shaped microplates were synthesized by a simple and fast microwave-hydrothermal method at 150 degrees C for 30 min. Cerium nitrate, urea and cetyltrimethylammonium bromide were used as precursors. Ceria (cubic CeO2) rhombus-shape was obtained by a thermal decomposition oxidation process at 500 degrees C for 1 h using as- synthesized Ce(OH)CO3. The products were characterized by X-ray powder diffraction, field-emission scanning electron microscopy, thermogravimetric analysis and Fourier transformed infrared spectroscopy. The use of microwave-hydrothermal method allowed to obtain cerium compounds at low temperature and shorter time compared to other synthesis methods. (C) 2008 Elsevier B.V. All rights reserved.