958 resultados para rhodonite crystals
Resumo:
Thermoluminescence, electron paramagnetic resonance and optical absorption properties of rhodonite, a natural silicate mineral, have been investigated and compared to those of synthetic crystal, pure and doped. The TL peaks grow linearly for radiation dose up to 4 kGy, and then saturate. In all the synthetic samples, 140 and 340 degrees C TL peaks are observed; the difference occurs in their relative intensities, but only 340 degrees C peak grows strongly for high doses. Al(2)O(3) and Al(2)O(3) + CaO-doped synthetic samples presented several decades intenser TL compared to that of synthetic samples doped with other impurities. A heating rate of 4 degrees C/s has been used in all the TL readings. The EPR spectrum of natural rhodonite mineral has only one huge signal around g = 2.0 with width extending from 1,000 to 6,000 G. This is due to Mn dipolar interaction, a fact proved by numerical calculation based on Van Vleck dipolar broadening expression. The optical absorption spectrum is rich in absorption bands in near-UV, visible and near-IR intervals. Several bands in the region from 540 to 340 nm are interpreted as being due to Mn(3+) in distorted octahedral environment. A broad and intense band around 1,040 nm is due to Fe(2+). It decays under heating up to 900 degrees C. At this temperature it is reduced by 80% of its original intensity. The pink, natural rhodonite, heated in air starts becoming black at approximately 600 degrees C.
Resumo:
In situ atomic force microscopy (AFM) allows images from the upper face and sides of TCNQ crystals to be monitored during the course of the electrochemical solid–solid state conversion of 50 × 50 μm2 three-dimensional drop cast crystals of TCNQ to CuTCNQ or M[TCNQ]2(H2O)2 (M = Co, Ni). Ex situ images obtained by scanning electron microscopy (SEM) also allow the bottom face of the TCNQ crystals, in contact with the indium tin oxide or gold electrode surface and aqueous metal electrolyte solution, to be examined. Results show that by carefully controlling the reaction conditions, nearly mono-dispersed, rod-like phase I CuTCNQ or M[TCNQ]2(H2O)2 can be achieved on all faces. However, CuTCNQ has two different phases, and the transformation of rod-like phase 1 to rhombic-like phase 2 achieved under conditions of cyclic voltammetry was monitored in situ by AFM. The similarity of in situ AFM results with ex situ SEM studies accomplished previously implies that the morphology of the samples remains unchanged when the solvent environment is removed. In the process of crystal transformation, the triple phase solid∣electrode∣electrolyte junction is confirmed to be the initial nucleation site. Raman spectra and AFM images suggest that 100% interconversion is not always achieved, even after extended electrolysis of large 50 × 50 μm2 TCNQ crystals.
Resumo:
Synthesis of MgC2O4⋅2H2O nano particles was carried out by thermal double decomposition of solutions of oxalic acid dihydrate (C2H2O4⋅2H2O) and Mg(OAc)2⋅4H2O employing CATA-2R microwave reactor. Structural elucidation was carried out by employing X-ray diffraction (XRD), particle size and shape were studied by transmission electron microscopy (TEM) and nature of bonding was investigated by optical absorption and near-infrared (NIR) spectral studies. The powder resulting from this method is pure and possesses distorted rhombic octahedral structure. The synthesized nano rod is 80 nm in diameter and 549 nm in length.
Resumo:
An ongoing challenge in chemistry and crystal engineering is the synthesis of functional materials with predictable structures and customisable properties. This may be achieved by crystallising mixtures of different compounds. Co-crystals formed through this method have predictable structures and their properties may be tuned by varying the ratio of the compounds in the crystallising solution. This thesis examines single crystals formed by the co-crystallisation of metal complexes that have similar structures but different physical or chemical properties. A variety of new compounds with interesting properties were prepared, characterised and their significance in the context of crystal engineering was explored.
Resumo:
In this article, we report the crystal structures of five halogen bonded co-crystals comprising quaternary ammonium cations, halide anions (Cl– and Br–), and one of either 1,2-, 1,3-, or 1,4-diiodotetrafluorobenzene (DITFB). Three of the co-crystals are chemical isomers: 1,4-DITFB[TEA-CH2Cl]Cl, 1,2-DITFB[TEA-CH2Cl]Cl, and 1,3-DITFB[TEA-CH2Cl]Cl (where TEA-CH2Cl is chloromethyltriethylammonium ion). In each structure, the chloride anions link DITFB molecules through halogen bonds to produce 1D chains propagating with (a) linear topology in the structure containing 1,4-DITFB, (b) zigzag topology with 60° angle of propagation in that containing 1,2-DITFB, and (c) 120° angle of propagation with 1,3-DITFB. While the individual chains have highly distinctive and different topologies, they combine through π-stacking of the DITFB molecules to produce remarkably similar overall arrangements of molecules. Structures of 1,4-DITFB[TEA-CH2Br]Br and 1,3-DITFB[TEA-CH2Br]Br are also reported and are isomorphous with their chloro/chloride analogues, further illustrating the robustness of the overall supramolecular architecture. The usual approach to crystal engineering is to make structural changes to molecular components to effect specific changes to the resulting crystal structure. The results reported herein encourage pursuit of a somewhat different approach to crystal engineering. That is, to investigate the possibilities for engineering the same overall arrangement of molecules in crystals while employing molecular components that aggregate with entirely different supramolecular connectivity.
Resumo:
We have studied the low magnetic field high temperature region of the H-T phase diagram of Bi2Sr2CaCu2O8 single crystals using the technique of non-resonant rf response at a frequency of 20 MHz. With H(rf)parallel to a, H parallel to c, the isothermal magnetic field scans below T-c show that the frequency f(H) of the tank circuit decreases continuously with increase in H before saturating at H similar to H-D(T). Such a decrease in f(H) reflects increasing rf penetration into the weakly screened region between CuO bilayers. The saturation of f(H) at its lowest value for H similar to H-D(T) indicates complete rf penetration land hence the disappearance of field dependence) due to the vanishing of the screening rf currents I-rf(c) in those regions or equivalently when the phase coherence between adjacent superconducting layers vanishes. Therefore H,(T) represents the decoupling of the adjacent superconducting bilayers, and hence also a 3D to 2D decoupling transition of the vortex structure. Simultaneous monitoring of the field dependent rf power dissipation P(H) shows a maximum in dP/dH at H-D(T). The observed H-D(T) line in many crystals is in excellent agreement with the (l/t-1) behavior proposed for decoupling.
Phase transitions and rare-earth magnetism in hexagonal and orthorhombic $DyMnO_{3}$ single crystals
Resumo:
The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO3 single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO3 shows magnetic ordering of Mn3+ (S = 2) spins on a triangular Mn lattice at T-N(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy3+ (S = 9/2) spins. At T-N(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO3 display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn3+ spins at T-N(Mn) = 39 K, a lock-in transition at Tlock-in = 16 K and a second antiferromagnetic transition at T-N(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.
Resumo:
A biocompatible method for fabricating three-dimensional photonic crystals opens up unique opportunities for structurally coloured biodegradable materials, but also for implantable biosensing and targeted therapeutics on the microscale.
Resumo:
Good quality single crystals of copper metagermanite, CuGeO3, are grown by flux technique. Growth is carried out at relatively low temperatures by using Bi2O3 along with CuO in an optimal flux ratio. Besides rendering the procedure simple, lower growth temperature reduces growth defect concentration. Single crystals of Cu1 - xCoxGeO3 and CuGe1 - yGayO3 are grown by the same method for different values of x and y to investigate the influence of in-chain and off-chain doping on spin-Peierls (SP) transition. Change in color, morphology and surface features as a result of doping are briefly discussed. Spin-Peierls transition of these crystals is studied by susceptibility measurements on a commercial SQUID magnetometer. Cationic substitution resulted in reduction of spin-Peierls transition temperature (T-SP) of CuGeO3. Substitution of magnetic impurity cobalt in-chain site caused more pronounced effects such as suppression of SP phase.
Resumo:
The role of a charge buffer layer in the superconductivity of high-T-c materials is best studied by cationic substitutions. In this work, the chain copper in YBCO single crystals is substituted by Co3+ ion and consequent effect on superconducting transition temperature (T-c) studied. The T-c is measured using non-resonant Microwave Absorption technique, which is a highly sensitive and contactless method. It is seen that T-c of as-grown crystals is considerably enhanced by cobalt doping in low concentration regime. In contrast, higher T-c is achieved in undoped crystals only after extended oxygen anneal. When dopant concentration increases beyond an optimal value, T-c decreases and the system does not show superconductivity when cobalt content is high (x > 0.5 in YBa2Cu3-xCOxO7+/-delta). This behaviour consequent to cobalt substitution is discussed with reference to the apical oxygen model. Optimal cobalt doping can be thought of as an alternative to extended oxygen anneal in as-grown crystals of YBCO.