963 resultados para reverse phase protein array
Resumo:
Cancer is caused by a complex pattern of molecular perturbations. To understand the biology of cancer, it is thus important to look at the activation state of key proteins and signaling networks. The limited amount of available sample material from patients and the complexity of protein expression patterns make the use of traditional protein analysis methods particularly difficult. In addition, the only approach that is currently available for performing functional studies is the use of serial biopsies, which is limited by ethical constraints and patient acceptance. The goal of this work was to establish a 3-D ex vivo culture technique in combination with reverse-phase protein microarrays (RPPM) as a novel experimental tool for use in cancer research. The RPPM platform allows the parallel profiling of large numbers of protein analytes to determine their relative abundance and activation level. Cancer tissue and the respective corresponding normal tissue controls from patients with colorectal cancer were cultured ex vivo. At various time points, the cultured samples were processed into lysates and analyzed on RPPM to assess the expression of carcinoembryonic antigen (CEA) and 24 proteins involved in the regulation of apoptosis. The methodology displayed good robustness and low system noise. As a proof of concept, CEA expression was significantly higher in tumor compared with normal tissue (p<0.0001). The caspase 9 expression signal was lower in tumor tissue than in normal tissue (p<0.001). Cleaved Caspase 8 (p=0.014), Bad (p=0.007), Bim (p=0.007), p73 (p=0.005), PARP (p<0.001), and cleaved PARP (p=0.007) were differentially expressed in normal liver and normal colon tissue. We demonstrate here the feasibility of using RPPM technology with 3-D ex vivo cultured samples. This approach is useful for investigating complex patterns of protein expression and modification over time. It should allow functional proteomics in patient samples with various applications such as pharmacodynamic analyses in drug development.
Resumo:
Résumé pour un large public: La vaccination a eu un impact énorme sur la santé mondiale. Mais, quel est le principe d'un vaccin? Il est basé sur la 'mémoire immunologique', qui est une particularité exclusive des systèmes immunitaires des organismes évolués. Suite à une infection par un pathogène, des cellules spécialisées de notre système immunitaire (les lymphocytes) le reconnaissent et initient une réaction immunitaire qui a pour but son élimination. Pendant cette réaction se développent aussi des cellules, appelées cellules lymphocytaires mémoire, qui persistent pour longue durée et qui ont la capacité de stimuler une réaction immunitaire très efficace immédiatement après une seconde exposition à ce même pathogène. Ce sont ces cellules mémoires (lymphocytes B et T) qui sont à la base de la 'mémoire immunologique' et qui sont stimulées lors de la vaccination. Chez l'homme, deux populations distinctes des lymphocytes T mémoires ont été identifiées: les cellules centrales (CM) et effectrices (EM) mémoires. Ces populations sont fonctionnellement hétérogènes et exercent des rôles distincts et essentiels dans l'immunité protectrice. Typiquement, les cellules effectrices mémoires sont capables de tuer immédiatement le pathogène tandis que les cellules centrales mémoires sont responsables d'initier une réponse immunitaire complète. Pourtant, les mécanismes biochimiques qui contrôlent les fonctions de ces cellules ont été jusqu'à présent peu étudiés à cause de la faible fréquence de ces cellules et de la quantité limitée de tissus humains disponibles pour les analyses. La compréhension de ces mécanismes est cruciale pour la réalisation de vaccins efficaces et pour le développement de nouveaux médicaments capables de moduler la réponse immunitaire lymphocytaire. Dans cette thèse, nous avons d'abord développé et amélioré une technologie appelée 'protéine array en phase inverse' qui possède un niveau de sensibilité beaucoup plus élevé par rapport aux technologies classiquement utilisées dans l'étude des protéines. Grâce à cette technique, nous avons pu comparer la composition protéique du système de transmission des signaux d'activation des cellules CM et EM humaines. L'analyse de 8 à 13 sujets sains a montré que ces populations des cellules mémoires possèdent un système de signalisation protéique différent. En effet, les cellules EM possèdent, par rapport aux cellules CM, des niveaux réduits d'une protéine régulatrice (appelée c-Cbl) que nous avons démontré comme étant responsable des fonctions spécifiques de ces cellules. En effet, en augmentant artificiellement l'expression de cette protéine régulatrice dans les cellules EM jusqu'au niveau de celui des cellules CM, nous avons induit dans les cellules EM des capacités fonctionnelles caractéristiques des cellules CM. En conclusion, notre étude a identifié, pour la première fois chez l'homme, un mécanisme biochimique qui contrôle les fonctions des populations des cellules mémoires. Résumé en Français: Les cellules mémoires persistent inertes dans l'organisme et produisent des réactions immunitaires rapides et robustes contre les pathogènes précédemment rencontrés. Deux populations distinctes des cellules mémoires ont été identifiées chez l'homme: les cellules centrales (CM) et effectrices (EM) mémoires. Ces populations sont fonctionnellement hétérogènes et exercent des rôles distincts et critiques dans l'immunité protectrice. Les mécanismes biochimiques qui contrôlent leurs fonctions ont été jusqu'à présent peu étudiés, bien que leur compréhension soit cruciale pour le développement des vaccins et des nouveaux traitements/médicaments. Les limites majeures à ces études sont la faible fréquence de ces populations et la quantité limitée de tissus humains disponibles. Dans cette thèse nous avons d'abord développé et amélioré la technologie de 'protéine array en phase inverse' afin d'analyser les molécules de signalisation des cellules mémoires CD4 et CD8 humaines isolées ex vivo. L'excellente sensibilité, la reproductibilité et la linéarité de la détection, ont permis de quantifier des variations d'expression protéiques supérieures à 20% dans un lysat équivalent à 20 cellules. Ensuite, grâce à l'analyse de 8 à 13 sujets sains, nous avons prouvé que les cellules mémoires CD8 ont une composition homogène de leur système de signalisation tandis que les cellules CD4 EM expriment significativement de plus grandes quantités de SLP-76 et des niveaux réduits de c-Cbl, Syk, Fyn et LAT par rapport aux cellules CM. En outre, l'expression réduite du régulateur négatif c-Cbl est corrélée avec l'expression des SLP-76, PI3K et LAT uniquement dans les cellules EM. L'évaluation des propriétés fonctionnelles des cellules mémoires a permis de démontrer que l'expression réduite du c-Cbl dans les cellules EM est associé à une diminution de leur seuil d'activation. En effet, grâce a la technique de transduction cytosolique, nous avons augmenté la quantité de c-Cbl des cellules EM à un niveau comparable à celui des cellules CM et constaté une réduction de la capacité des cellules EM à proliférer et sécréter des cytokines. Ce mécanisme de régulation dépend principalement de l'activité d'ubiquitine ligase de c-Cbl comme démontré par l'impact réduit du mutant enzymatiquement déficient de c-Cbl sur les fonctions de cellules EM. En conclusion, cette thèse identifie c-Cbl comme un régulateur critique des réponses fonctionnelles des populations de cellules T mémoires et fournit, pour la première fois chez l'homme, un mécanisme contrôlant l'hétérogénéité fonctionnelle des ces cellules. De plus, elle valide l'utilisation combinée des 'RPP arrays' et de la transduction cytosolique comme outil puissant d'analyse quantitative et fonctionnel des protéines de signalisation. Summary : Memory cells persist in a quiescent state in the body and mediate rapid and vigorous immune responses toward pathogens previously encountered. Two subsets of memory cells, namely central (CM) and effector (EM) memory cells, have been identified in humans. These subsets display high functional heterogeneity and assert critical and distinct roles in the control of protective immunity. The biochemical mechanisms controlling their functional properties remain so far poorly investigated, although their clarification is crucial for design of effective T-cell vaccine and drug development. Major limitations to these studies lie in the low frequency of memory T cell subsets and the limited amount of human specimen available. In this thesis we first implemented the innovative reverse phase protein array approach to profile 15 signalling components in human CD8 and CD4 memory T cells isolated ex vivo. The high degree of sensitivity, reproducibility and linearity achieved, allowed an excellent quantification of variations in protein expression higher than 20% in as few as 20-cell equivalent per spot. Based on the analysis of 8 to 13 healthy subjects, we showed that CD8 memory cells have a homogeneous composition of their signaling machinery while CD4 EM cells express statistically significant increased amounts of SLP-76 and reduced levels of c- Cbl, Syk, Fyn and LAT as compared to CM cells. Moreover, in EM but not CM cells, reduced expression of negative regulator c-Cbl correlated with the expression of SLP-76, PI3K and LAT. Subsequently, we demonstrated that the higher functional properties and the lower functional threshold of EM cells is associated with reduced expression of c-Cbl. Indeed, by increasing c-Cbl content of EM cells to the same level of CM cells using cytosolic transduction, we impaired their proliferation and cytokine production. This regulatory mechanism was primarily dependent on c-Cbl E3 ubiquitin ligase activity as evidenced by the weaker impact of enzymatically deficient c-Cbl C381A mutant on EM cell functions. Together, these results identify c-Cbl as a critical regulator of the functional responses of memory T cell subsets and provides, for the first time in humans, a mechanism controlling the functional heterogeneity of memory CD4 cells. Moreover it validates the combined use of RPP arrays and cytosolic transduction approaches as a powerful tool to quantitatively analyze signalling proteins and functionally assess their roles.
Resumo:
Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.
Resumo:
PAX2 is one of nine PAX genes regulating tissue development and cellular differentiation in embryos. PAX2 promotes cell proliferation, oncogenic transformation, cell-lineage specification, migration, and survival. Unattenuated PAX2 has been found in several cancer types. We therefore sought to elucidate the role of PAX2 in ovarian carcinomas. We found that PAX2 was expressed in low-grade serous, clear cell, endometrioid and mucinous cell ovarian carcinomas, which are relatively chemoresistant compared to high grade serous ovarian carcinomas. Four ovarian cancer cell lines, RMUGL (mucinous), TOV21G (clear cell), MDAH-2774 (endometrioid) and IGROV1 (endometrioid), which express high-levels of PAX2, were used to study the function of PAX2. Lentiviral shRNAs targeting PAX2 were used to knock down PAX2 expression in these cell lines. Cellular proliferation and motility assays subsequently showed that PAX2 stable knockdown had slower growth and migration rates. Microarray gene expression profile analysis further identified genes that were affected by PAX2 including the tumor suppressor gene G0S2. Reverse phase protein array (RPPA) data showed that PAX2 knockdown affected several genes that are involved in apoptosis, which supports the fact that downregulation of PAX2 in PAX2-expressing ovarian cancer cells inhibits cell growth. We hypothesize that this growth inhibition is due to upregulation of the tumor suppressor gene G0S2 via induction of apoptosis. PAX2 represents a potential therapeutic target for chemoresistant PAX2-expressing ovarian carcinomas.
Resumo:
The phosphatidylinositol 3-kinase (PI3K) pathway, through its major effector node AKT, is critical for the promotion of cell growth, division, motility and apoptosis evasion. This signaling axis is therefore commonly targeted in the form of mutations and amplifications in a myriad of malignancies. Glycogen synthase kinase 3 (GSK3) was first discovered as the kinase responsible for phosphorylating and inhibiting the activity of glycogen synthase, ultimately antagonizing the storage of glucose as glycogen. Its activity counteracts the effects of insulin in glucose metabolism and AKT has long been recognized as one of the key molecules capable of phosphorylating GSK3 and inhibiting its activity. However, here we demonstrate that GSK3 is required for optimal phosphorylation and activation of AKT in different malignant cell lines, and that this effect is independent of the type of growth factor stimulation and can happen even in basal states. Both GSK3 alpha and GSK3 beta isoforms are necessary for AKT to become fully active, displaying a redundant role in the setting. We also demonstrate that this effect of GSK3 on AKT phosphorylation and full activation is dependent on its kinase activity, since highly specific inhibitors targeting GSK3 catalytic activity also promote a reduction in phosphorylated AKT. Analysis of reverse phase protein array screening of MDA-MB-231 breast cancer cells treated with RNA interference targeting GSK3 unexpectedly revealed an increase in levels of phosphorylated MAPK14 (p38). Treatment with the selective p38 inhibitor SB 202190 rescued AKT activation in that cell line, corroborating the importance of unbiased proteomic analysis in exposing cross-talks between signaling networks and demonstrating a critical role for p38 in the regulation of AKT phosphorylation.
Resumo:
The phosphodiesterase 4 (PDE4) family are cAMP specific phosphodiesterases that play an important role in the inflammatory response and is the major PDE type found in inflammatory cells. A significant number of PDE4 specific inhibitors have been developed and are currently being investigated for use as therapeutic agents. Apremilast, a small molecule inhibitor of PDE 4 is in development for chronic inflammatory disorders and has shown promise for the treatment of psoriasis, psoriatic arthritis as well as other inflammatory diseases. It has been found to be safe and well tolerated in humans and in March 2014 it was approved by the US food and drug administration for the treatment of adult patients with active psoriatic arthritis. The only other PDE4 inhibitor on the market is Roflumilast and it is used for treatment of respiratory disease. Roflumilast is approved in the EU for the treatment of COPD and was recently approved in the US for treatment to reduce the risk of COPD exacerbations. Roflumilast is also a selective PDE4 inhibitor, administered as an oral tablet once daily, and is thought to act by increasing cAMP within lung cells. As both (Apremilast and Roflumilast) compounds selectively inhibit PDE4 but are targeted at different diseases, there is a need for a clear understanding of their mechanism of action (MOA). Differences and similarity of MOA should be defined for the purposes of labelling, for communication to the scientific community, physicians, and patients, and for an extension of utility to other diseases and therapeutic areas. In order to obtain a complete comparative picture of the MOA of both inhibitors, additional molecular and cellular biology studies are required to more fully elucidate the signalling mediators downstream of PDE4 inhibition which result in alterations in pro- and anti-inflammatory gene expression. My studies were conducted to directly compare Apremilast with Roflumilast, in order to substantiate the differences observed in the molecular and cellular effects of these compounds, and to search for other possible differentiating effects. Therefore the main aim of this thesis was to utilise cutting-edge biochemical techniques to discover whether Apremilast and Roflumilast work with different modes of action. In the first part of my thesis I used novel genetically encoded FRET based cAMP sensors targeted to different intracellular compartments, in order to monitor cAMP levels within specific microdomains of cells as a consequence of challenge with Apremilast and Roflumilast, which revealed that Apremilast and Roflumilast do regulate different pools of cAMP in cells. In the second part of my thesis I focussed on assessing whether Apremilast and Roflumilast cause differential effects on the PKA phosphorylation state of proteins in cells. I used various biochemical techniques (Western blotting, Substrate kinase arrays and Reverse Phase Protein array and found that Apremilast and Roflumilast do lead to differential PKA substrate phosphorylation. For example I found that Apremilast increases the phosphorylation of Ribosomal Protein S6 at Ser240/244 and Fyn Y530 in the S6 Ribosomal pathway of Rheumatoid Arthritis Synovial fibroblast and HEK293 cells, whereas Roflumilast does not. This data suggests that Apremilast has distinct biological effects from that of Roflumilast and could represent a new therapeutic role for Apremilast in other diseases. In the final part of my thesis, Phage display technology was employed in order to identify any novel binding motifs that associate with PDE4 and to identify sequences that were differentially regulated by the inhibitors in an attempt to find binding motifs that may exist in previously characterised signalling proteins. Petide array technology was then used to confirm binding of specific peptide sequences or motifs. Results showed that Apremilast and Roflumilast can either enhance or decrease the binding of PDE4A4 to specific peptide sequences or motifs that are found in a variety of proteins in the human proteome, most interestingly Ubiquitin-related proteins. The data from this chapter is preliminary but may be used in the discovery of novel binding partners for PDE4 or to provide a new role for PDE inhibition in disease. Therefore the work in this thesis provides a unique snapshot of the complexity of the cAMP signalling system and is the first to directly compare action of the two approved PDE4 inhibitors in a detailed way.
Resumo:
A relatively simple, selective, precise and accurate high performance liquid chromatography (HPLC) method based on a reaction of phenylisothiocyanate (PITC) with glucosamine (GL) in alkaline media was developed and validated to determine glucosamine hydrochloride permeating through human skin in vitro. It is usually problematic to develop an accurate assay for chemicals traversing skin because the excellent barrier properties of the tissue ensure that only low amounts of the material pass through the membrane and skin components may leach out of the tissue to interfere with the analysis. In addition, in the case of glucosamine hydrochloride, chemical instability adds further complexity to assay development. The assay, utilising the PITC-GL reaction was refined by optimizing the reaction temperature, reaction time and PITC concentration. The reaction produces a phenylthiocarbarnyl-glucosamine (PTC-GL) adduct which was separated on a reverse-phase (RP) column packed with 5 mu m ODS (C-18) Hypersil particles using a diode array detector (DAD) at 245 nm. The mobile phase was methanol-water-glacial acetic acid (10:89.96:0.04 v/v/v, pH 3.5) delivered to the column at 1 ml min(-1) and the column temperature was maintained at 30 degrees C Using a saturated aqueous solution of glucosamine hydrochloride, in vitro permeation studies were performed at 32 +/- 1 degrees C over 48 h using human epidermal membranes prepared by a heat separation method and mounted in Franz-type diffusion cells with a diffusional area 2.15 +/- 0.1 cm(2). The optimum derivatisation reaction conditions for reaction temperature, reaction time and PITC concentration were found to be 80 degrees C, 30 min and 1 % v/v, respectively. PTC-Gal and GL adducts eluted at 8.9 and 9.7 min, respectively. The detector response was found to be linear in the concentration range 0-1000 mu g ml(-1). The assay was robust with intra- and inter-day precisions (described as a percentage of relative standard deviation, %R.S.D.) < 12. Intra- and inter-day accuracy (as a percentage of the relative error, %RE) was <=-5.60 and <=-8.00, respectively. Using this assay, it was found that GL-HCI permeates through human skin with a flux 1.497 +/- 0.42 mu g cm(-2) h(-1), a permeability coefficient of 5.66 +/- 1.6 x 10(-6) cm h(-1) and with a lag time of 10.9 +/- 4.6 h. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A RP-HPLC method with photodiode array detection (DAD) was developed to separate, identify and quantify simultaneously the most representative phenolic compounds present in Madeira and Canary Islands wines. The optimized chromatographic method was carefully validated in terms of linearity, precision, accuracy and sensitivity. A high repeatability and a good stability of phenolics retention times (a3%) were obtained, as well as relative peak area. Also high recoveries were achieved, over 80.3%. Polyphenols calibration curves showed a good linearity (r2 A0.994) within test ranges. Detection limits ranged between 0.03 and 11.5 lg/mL for the different polyphenols. A good repeatability was obtained, with intra-day variations less than 7.9%. The described method was successfully applied to quantify several polyphenols in 26 samples of different kinds of wine (red, ros and white wines) from Madeira and Canary Islands. Gallic acid was by far the most predominant acid. It represents more than 65% of all phenolics, followed by p-coumaric and caffeic acids. The major flavonoid found in Madeira wines was trans-resveratrol. In some wines, (–)-epicatechin was also found in highest amount. Canary wines were shown to be rich in gallic, caffeic and p-coumaric acids and quercetin.
Resumo:
Introduction - Baccharis dracunculifolia, which has great potential for the development of new phytotherapeutic medicines, is the most important botanical source of the southeastern Brazilian propolis, known as green propolis on account of its color. Objective - To develop a reliable reverse-phase HPLC chromatographic method for the analysis of phenolic compounds in both B. dracunculifolia raw material and its hydroalcoholic extracts. Methodology - The method utilised a C(18) CLC-ODS (M) (4.6 x 250 mm) column with nonlinear gradient elution and UV detection at 280 nm. A procedure for the extraction of phenolic compounds using aqueous ethanol 90%, with the addition of veratraldehyde as the internal standard, was developed allowing the quantification of 10 compounds: caffeic acid, coumaric acid, ferulic acid, cinnamic acid, aromadendrin-4`-methyl ether, isosakuranetin, drupanin, artepillin C, baccharin and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran acid. Results - The developed method gave a good detection response with linearity in the range 20.83-800 mu g/mL and recovery in the range 81.25-93.20%, allowing the quantification of the analysed standards. Conclusion - The method presented good results for the following parameters: selectivity, linearity, accuracy, precision, robustness, as well as limit of detection and limit of quantitation. Therefore, this method could be considered as an analytical tool for the quality control of B. dracunculifolia raw material and its products in both cosmetic and pharmaceutical companies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
While protein microarray technology has been successful in demonstrating its usefulness for large scale high-throughput proteome profiling, performance of antibody/antigen microarrays has been only moderately productive. Immobilization of either the capture antibodies or the protein samples on solid supports has severe drawbacks. Denaturation of the immobilized proteins as well as inconsistent orientation of antibodies/ligands on the arrays can lead to erroneous results. This has prompted a number of studies to address these challenges by immobilizing proteins on biocompatible surfaces, which has met with limited success. Our strategy relates to a multiplexed, sensitive and high-throughput method for the screening quantification of intracellular signalling proteins from a complex mixture of proteins. Each signalling protein to be monitored has its capture moiety linked to a specific oligo âtag’. The array involves the oligonucleotide hybridization-directed localization and identification of different signalling proteins simultaneously, in a rapid and easy manner. Antibodies have been used as the capture moieties for specific identification of each signaling protein. The method involves covalently partnering each antibody/protein molecule with a unique DNA or DNA derivatives oligonucleotide tag that directs the antibody to a unique site on the microarray due to specific hybridization with a complementary tag-probe on the array. Particular surface modifications and optimal conditions allowed high signal to noise ratio which is essential to the success of this approach.
Resumo:
Trinta gatas, saudáveis, foram submetidas à ovariectomia pela técnica convencional e por videolaparoscopia. Amostras de sangue foram obtidas com o objetivo de verificar a intensidade da resposta inflamatória por meio da análise das concentrações de proteinas de fase aguda e contagem de leucócitos antes e até 144 horas após procedimento cirúrgico. As proteínas que apresentaram aumento significativo 24 horas após a cirurgia foram: ceruloplasmina, hemopexina, haptoglobina e α1-glicoproteína ácida, 69,8%, 103,5%, 117,3% e 199,0%, respectivamente, para ovariectomia convencional, e 22,3%, 46,1%, 79,8% e 74,6%, respectivamente, para ovariectomia por videolaparoscopia. A resposta inflamatória foi mais evidente nas gatas submetidas à ovariectomia convencional. Os resultados mostram aumento e diminuição na concentração de proteínas de fase aguda e na contagem de leucócitos, podendo ser utilizados na avaliação da resposta inflamatória induzida por procedimentos cirúrgicos.
Resumo:
The high performance liquid chromatography (HPLC) technique was applied to measure phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity in soybean (Glycine max L. Merril cv. BR16) roots. t-Cinnamate, the catalytic product of the PAL reaction was quantified at 275 nm by isocratic elution with methanol:water through an ODS(M) column. Comparative experiments were carried out with 1.0 mM ferulic acid, an inducer of PAL activity. The results suggest that liquid chromatography is a rapid and sensitive method to analyze PAL activity in non-purified extract.
Resumo:
A rapid, sensitive and reliable reverse-phase HPLC method was used for the quantitative determination of the anti-fungal and insecticide amides, dihydropiplartine (1), piplartine (2), Delta(alpha,beta)-dihydropiperine (3) and pellitorine (4) in plants in natura, in plantlets in vitro and ex vitro, and in callus of Piper tuberculatum. Well-resolved peaks were obtained with good detection response and linearity in the range of 15.0-3000 mug/mL. The plants in natura contained compounds 1-4, the plantlets ex vitro and in vitro accumulated compounds 1-2 and 1-4, respectively, while only amide 4 was found in callus. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Explants of Maytenus aquifolium were induced to form callus and, subsequently, suspension cultures. The isolation of natural products from callus led to the identification of the cytotoxic triterpene quinonemethides, maitenin (1) and 22 beta-hydroxymaitenin (2), A rapid, sensitive and reliable reversed-phase high-performance liquid chromatography method was developed using a Cls column and isocratic elution for the determination of 1 and 2, the elaborated method gave well-resolved peaks for these compounds with good detection response and linearity in the range of 0.08-72.0 mu g. The quantification of 1 and 2 was performed by an external standard method. (C) 1998 John Wiley & Sons, Ltd.