5 resultados para reuniens


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies from our laboratory have documented that the medial hypothalamic defensive system is critically involved in processing actual and contextual predatory threats, and that the dorsal premammillary nucleus (PMd) represents the hypothalamic site most responsive to predatory threats. Anatomical findings suggest that the PMd is in a position to modulate memory processing through a projecting branch to specific thalamic nuclei, i.e., the nucleus reuniens (RE) and the ventral part of the anteromedial nucleus (AMv). In the present study, we investigated the role of these thalamic targets in both unconditioned (i.e., fear responses to predatory threat) and conditioned (i.e., contextual responses to predator-related cues) defensive behaviors. During cat exposure, all experimental groups exhibited intense defensive responses with the animals spending most of the time in the home cage displaying freezing behavior. However, during exposure to the environment previously associated with a cat, the animals with combined RE + AMv lesions, and to a lesser degree, animals with single AMv unilateral lesions, but not animals with single RE lesions, presented a reduction of contextual conditioned defensive responses. Overall, the present results provide clear evidence suggesting that the PMd`s main thalamic targets (i.e., the nucleus reuniens and the AMv) seem to be critically involved in the emotional memory processing related to predator cues. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The midline/intralaminar nuclei form a remarkable group of nuclei of the medial and dorsal thalamus. The midline nuclei, in rats, comprises the paratenial nuclei (PT), paraventricular (PV), intermediodorsal (IMD), reuniens (Re) and rhomboid (Rh). The intralaminar nuclei comprises the central medial (CM), paracentral (PC), central lateral (CL) and parafascicular (PF). Such nuclei have dense serotonergic innervation originating from the brainstem, especially from the so-called ascending activation system. These nuclei, in turn, send projections to various cortical and subcortical areas, specifically to limbic areas, which suggests the important role of this neurotransmitter in the limbic circuitry. The aim of this study was to characterize the distribution pattern and morphology of serotonin fibers in the nuclei of the midline and intralaminar thalamic of rocky cavy (Kerodon rupestris), a tipical rodent from brazilizan northeast. To reach this aim we used four rock cavies adults. Following the transcardially perfusion with paraformaldehyde and brain microtomy steps was performed immunohistochemistry for serotonin (5-HT), Nissl technique and subsequent achievement and image analysis to characterize the cytoarchitecture of these nuclei and the serotonergic fibers visualized. An analysis was made of Relative Optical Density (ROD) to semi-quantify the concentration of serotonin fibers in the areas of interest. Thus, we observed a cytoarchitectonic arrangement of these nuclei similar to that found in rats. In case of fibers distribution, those immunoreactive to 5-HT were presented in a higher concentration according as ROD in the midline nuclei relative to intralaminar; Re being the core which has a higher pixel value followed by the PV , Rh, IMD and PT. In intralaminar CL showed higher pixels, followed by nuclei CM, PC and PF. The serotonergic fibers were classified as number of varicosities and axon diameter, therefore find three types of fibers distributed through this nuclear complex: fibers rugous, granular and semi-granular. In PV fibers predominated rugous; in PT fibers predominated granular; IMD, CL and PF fibers were represented by semi-granular and Re, Rh, PC and CM fibers showed granular and semi-granular. Morphological characterization of serotonergic fibers and differences in density between the nuclei may suggest different patterns of synaptic organization of this neurotransmitter beyond confirming his large repertoire functional

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mid-winter development of refractoriness to melatonin (Mel) triggers recrudescence of the atrophied reproductive apparatus of rodents. As a consequence, over-wintering animals become reproductively competent just before the onset of spring conditions favorable for breeding. The neural target tissues that cease to respond to winter Mel signals have not been identified. We now report that the suprachiasmatic nucleus of the hypothalamus, which contains the principal circadian clock, and the reuniens and paraventricular nuclei of the thalamus, each independently becomes refractory to melatonin. Small implants of Mel that were left in place for 40 wk and that act locally on these brain nuclei, induced testicular regression within 6 wk in male Siberian hamsters; 12 wk later Mel implants no longer suppressed reproduction and gonadal recrudescence ensued. Hamsters that were then given a systemic Mel infusion s.c. immediately initiated a second gonadal regression, implying that neurons at each site become refractory to Mel without compromising responsiveness of other Mel target tissues. Refractoriness occurs locally and independently at each neural target tissue, rather than in a separate “refractoriness” substrate. Restricted, target-specific actions of Mel are consistent with the independent regulation by day length of the several behavioral and physiological traits that vary seasonally in mammals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for simultaneous iontophoretic injections of the anterograde tracer Phaseolus vulgaris leukoagglutinin and the retrograde tracer fluorogold was used to characterize in the rat a hypothalamothalamocortical pathway ending in a region thought to regulate attentional mechanisms by way of eye and head movements. The relevant medial hypothalamic nuclei receive pheromonal information from the amygdala and project to specific parts of the thalamic nucleus reuniens and anteromedial nucleus, which then project to a specific lateral part of the retrosplenial area (or medial visual cortex). This cortical area receives a convergent input from the lateral posterior thalamic nucleus and projects to the superior colliculus. Bidirectional connections with the hippocampal formation suggest that activity in this circuit is modified by previous experience. Striking parallels with basal ganglia circuitry are noted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Funded by Wellcome Trust. Grant Numbers: WT087955, WT09520