18 resultados para retrotransposition
Resumo:
LINEs are transposable elements, widely distributed among eukaryotes, that move via reverse transcription of an RNA intermediate. Mammalian LINEs have two ORFs (ORF1 and ORF2). The proteins encoded by these ORFs play important roles in the retrotransposition process. Although the predicted amino acid sequence of ORF1 is not closely related to any known proteins, it is highly basic; thus, it has long been hypothesized that ORF1 protein functions to bind LINE-1 (L1) RNA during retrotransposition. Cofractionation of ORF1 protein and L1 RNA in extracts from both mouse and human embryonal carcinoma cells indicated that ORF1 protein binds L1 RNA, forming a ribonucleoprotein particle. Based on UV crosslinking and electrophoretic mobility-shift assays using purified components, we demonstrate here that the ORF1 protein encoded by mouse L1 binds nucleic acids with a strong preference for RNA and other single-stranded nucleic acids. Furthermore, multiple copies of ORF1 protein appear to bind single-stranded nucleic acid in a manner suggesting positive cooperativity; such binding characteristics are likely to be facilitated by the protein–protein interactions detected among molecules of ORF1 polypeptide by coimmunoprecipitation. These observations are consistent with the formation of ribonucleoprotein particles containing L1 RNA and ORF1 protein and provide additional evidence for the role of ORF1 protein during retrotransposition of L1.
Resumo:
Retroviruses undergo a high frequency of genetic alterations during the process of copying their RNA genomes. However, little is known about the replication fidelity of other elements that transpose via reverse transcription of an RNA intermediate. The complete sequence of 29 independently integrated copies of the yeast retrotransposon Ty1 (173,043 nt) was determined, and the mutation rate during a single cycle of replication was calculated. The observed base substitution rate of 2.5 x 10(-5) bp per replication cycle suggests that this intracellular element can mutate as rapidly as retroviruses. The pattern and distribution of errors in the Ty1 genome is nonrandom and provides clues to potential in vivo molecular mechanisms of reverse transcriptase-mediated error generation, including heterogeneous RNase H cleavage of Ty1 RNA, addition of terminal nontemplated bases, and transient dislocation and realignment of primer-templates. Overall, analysis of errors generated during Ty1 replication underscores the utility of a genetically tractable model system for the study of reverse transcriptase fidelity.
Resumo:
Retroelements are important evolutionary forces but can be deleterious if left uncontrolled. Members of the human APOBEC3 family of cytidine deaminases can inhibit a wide range of endogenous, as well as exogenous, retroelements. These enzymes are structurally organized in one or two domains comprising a zinc-coordinating motif. APOBEC3G contains two such domains, only the C terminal of which is endowed with editing activity, while its N-terminal counterpart binds RNA, promotes homo-oligomerization, and is necessary for packaging into human immunodeficiency virus type 1 (HIV-1) virions. Here, we performed a large-scale mutagenesis-based analysis of the APOBEC3G N terminus, testing mutants for (i) inhibition of vif-defective HIV-1 infection and Alu retrotransposition, (ii) RNA binding, and (iii) oligomerization. Furthermore, in the absence of structural information on this domain, we used homology modeling to examine the positions of functionally important residues and of residues found to be under positive selection by phylogenetic analyses of primate APOBEC3G genes. Our results reveal the importance of a predicted RNA binding dimerization interface both for packaging into HIV-1 virions and inhibition of both HIV-1 infection and Alu transposition. We further found that the HIV-1-blocking activity of APOBEC3G N-terminal mutants defective for packaging can be almost entirely rescued if their virion incorporation is forced by fusion with Vpr, indicating that the corresponding region of APOBEC3G plays little role in other aspects of its action against this pathogen. Interestingly, residues forming the APOBEC3G dimer interface are highly conserved, contrasting with the rapid evolution of two neighboring surface-exposed amino acid patches, one targeted by the Vif protein of primate lentiviruses and the other of yet-undefined function.
Resumo:
The horizontal transfer of Trypanosoma cruzi mitochondrial minicircle DNA to the genomes of naturally infected humans may play an important role in the pathogenesis of Chagas disease. Minicircle integrations within LINE-1 elements create the potential for foreign DNA mobility within the host genome via the machinery associated with this retrotransposon. Here we document integration of minicircle DNA fragments in clonal human macrophage cell lines and their mobilization over time. The movement of an integration event in a clonal transfected cell line was tracked at three months and three years post-infection. The minicircle sequence integrated into a LINE-1 retrotransposon; one such foreign fragment subsequently relocated to another genomic location in association with associated LINE-1 elements. The p15 locus was altered at three years as a direct effect of minicircle/LINE-1 acquisition, resulting in elimination of p15 mRNA. Here we show for the first time a molecular pathology stemming from mobilization of a kDNA/LINE-1 mutation. These genomic changes and detected transcript variations are consistent with our hypothesis that minicircle integration is a causal component of parasite-independent, autoimmune-driven lesions seen in the heart and other target tissues associated with Chagas disease.
Resumo:
Arising from either retrotransposition or genomic duplication of functional genes, pseudogenes are “genomic fossils” valuable for exploring the dynamics and evolution of genes and genomes. Pseudogene identification is an important problem in computational genomics, and is also critical for obtaining an accurate picture of a genome’s structure and function. However, no consensus computational scheme for defining and detecting pseudogenes has been developed thus far. As part of the ENCyclopedia Of DNA Elements (ENCODE) project, we have compared several distinct pseudogene annotation strategies and found that different approaches and parameters often resulted in rather distinct sets of pseudogenes. We subsequently developed a consensus approach for annotating pseudogenes (derived from protein coding genes) in the ENCODE regions, resulting in 201 pseudogenes, two-thirds of which originated from retrotransposition. A survey of orthologs for these pseudogenes in 28 vertebrate genomes showed that a significant fraction (∼80%) of the processed pseudogenes are primate-specific sequences, highlighting the increasing retrotransposition activity in primates. Analysis of sequence conservation and variation also demonstrated that most pseudogenes evolve neutrally, and processed pseudogenes appear to have lost their coding potential immediately or soon after their emergence. In order to explore the functional implication of pseudogene prevalence, we have extensively examined the transcriptional activity of the ENCODE pseudogenes. We performed systematic series of pseudogene-specific RACE analyses. These, together with complementary evidence derived from tiling microarrays and high throughput sequencing, demonstrated that at least a fifth of the 201 pseudogenes are transcribed in one or more cell lines or tissues.
Resumo:
BACKGROUND: The vast majority of the 1.1 million Alu elements are retrotranspositionally inactive, where only a few loci referred to as 'source elements' can generate new Alu insertions. The first step in identifying the active Alu sources is to determine the loci transcribed by RNA polymerase III (pol III). Previous genome-wide analyses from normal and transformed cell lines identified multiple Alu loci occupied by pol III factors, making them candidate source elements. FINDINGS: Analysis of the data from these genome-wide studies determined that the majority of pol III-bound Alus belonged to the older subfamilies Alu S and Alu J, which varied between cell lines from 62.5% to 98.7% of the identified loci. The pol III-bound Alus were further scored for estimated retrotransposition potential (ERP) based on the absence or presence of selected sequence features associated with Alu retrotransposition capability. Our analyses indicate that most of the pol III-bound Alu loci candidates identified lack the sequence characteristics important for retrotransposition. CONCLUSIONS: These data suggest that Alu expression likely varies by cell type, growth conditions and transformation state. This variation could extend to where the same cell lines in different laboratories present different Alu expression patterns. The vast majority of Alu loci potentially transcribed by RNA pol III lack important sequence features for retrotransposition and the majority of potentially active Alu loci in the genome (scored high ERP) belong to young Alu subfamilies. Our observations suggest that in an in vivo scenario, the contribution of Alu activity on somatic genetic damage may significantly vary between individuals and tissues.
Resumo:
Immunity-related GTPases (IRG) play an important role in defense against intracellular pathogens. One member of this gene family in humans, IRGM, has been recently implicated as a risk factor for Crohn's disease. We analyzed the detailed structure of this gene family among primates and showed that most of the IRG gene cluster was deleted early in primate evolution, after the divergence of the anthropoids from prosimians ( about 50 million years ago). Comparative sequence analysis of New World and Old World monkey species shows that the single-copy IRGM gene became pseudogenized as a result of an Alu retrotransposition event in the anthropoid common ancestor that disrupted the open reading frame (ORF). We find that the ORF was reestablished as a part of a polymorphic stop codon in the common ancestor of humans and great apes. Expression analysis suggests that this change occurred in conjunction with the insertion of an endogenous retrovirus, which altered the transcription initiation, splicing, and expression profile of IRGM. These data argue that the gene became pseudogenized and was then resurrected through a series of complex structural events and suggest remarkable functional plasticity where alleles experience diverse evolutionary pressures over time. Such dynamism in structure and evolution may be critical for a gene family locked in an arms race with an ever-changing repertoire of intracellular parasites.
Resumo:
Arising from either retrotransposition or genomic duplication of functional genes, pseudogenes are "genomic fossils" valuable for exploring the dynamics and evolution of genes and genomes. Pseudogene identification is an important problem in computational genomics, and is also critical for obtaining an accurate picture of a genome's structure and function. However, no consensus computational scheme for defining and detecting pseudogenes has been developed thus far. As part of the ENCyclopedia Of DNA Elements (ENCODE) project, we have compared several distinct pseudogene annotation strategies and found that different approaches and parameters often resulted in rather distinct sets of pseudogenes. We subsequently developed a consensus approach for annotating pseudogenes (derived from protein coding genes) in the ENCODE regions, resulting in 201 pseudogenes, two-thirds of which originated from retrotransposition. A survey of orthologs for these pseudogenes in 28 vertebrate genomes showed that a significant fraction ( approximately 80%) of the processed pseudogenes are primate-specific sequences, highlighting the increasing retrotransposition activity in primates. Analysis of sequence conservation and variation also demonstrated that most pseudogenes evolve neutrally, and processed pseudogenes appear to have lost their coding potential immediately or soon after their emergence. In order to explore the functional implication of pseudogene prevalence, we have extensively examined the transcriptional activity of the ENCODE pseudogenes. We performed systematic series of pseudogene-specific RACE analyses. These, together with complementary evidence derived from tiling microarrays and high throughput sequencing, demonstrated that at least a fifth of the 201 pseudogenes are transcribed in one or more cell lines or tissues.
Resumo:
Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents A beta-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against A beta-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals.
Resumo:
Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents A beta-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against A beta-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals.
Resumo:
The adult mammalian brain contains self-renewable, multipotent neural stem cells (NSCs) that are responsible for neurogenesis and plasticity in specific regions of the adult brain. Extracellular matrix, vasculature, glial cells, and other neurons are components of the niche where NSCs are located. This surrounding environment is the source of extrinsic signals that instruct NSCs to either self-renew or differentiate. Additionally, factors such as the intracellular epigenetics state and retrotransposition events can influence the decision of NSC`s fate into neurons or glia. Extrinsic and intrinsic factors form an intricate signaling network, which is not completely understood. These factors altogether reflect a few of the key players characterized so far in the new field of NSC research and are covered in this review. (C) 2010 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 3 107-114 DOI:10.1002/wsbm:100
Resumo:
O aumento do potencial produtivo da cultura de arroz via melhoramento genético está principalmente relacionado ao rendimento, a qualidade de grãos e a obtenção de plantas resistentes a doenças e pragas. Neste caso, deve ser explorada a variabilidade genética natural ou induzida através de agentes mutagênicos físicos, químicos ou biológicos. A vantagem do uso de mutagênicos biológicos, como os transposons e os retrotransposons, é que ao serem inseridos podem interrompem um gene causando uma mutação. Esta retrotransposição deixa uma marca que possibilita a identificação molecular do local de inserção. No presente trabalho, foi utilizada a estratégia de mutagênese insercional através de eventos de transposição do retrotransposon Tos17, induzido por cultura in vitro. A análise de diferentes genótipos de arroz é muito importante para avaliar se a transposição ocorre de forma similar em genótipos distintos. Foram avaliados calos embriogênicos de cultivares que têm um histórico de variabilidade genética em homozigose, linhagens obtidas através de cruzamentos com espécies silvestres e ecótipos de arroz vermelho, submetidos a 6 meses de cultura in vitro. O método escolhido para avaliar o número de cópias de Tos17 em calos embriogênicos foi a quantificação relativa por PCR em tempo real. A identificação dos genes mutados pela inserção do retrotransposon foi feita através do isolamento e amplificação das seqüências que flanqueiam os insertos de Tos17. O resultado deste experimento indica um aumento no número de cópias de Tos17 em 8 dos 21 genótipos avaliados. O seqüenciamento dos fragmentos de DNA que flanqueiam os insertos do retrotransposon Tos17, indicaram alta similaridade com seqüências genômicas não codificantes de arroz.
Resumo:
Zusammenfassung In der vorliegenden Arbeit wurden 74736 bp genomischer DNA-Sequenzder Hämoglobingen-Gruppe D aus der Chironomiden Art Chironomus tentansentschlüsselt und analysiert. Durch Datenbankrecherchen undSequenz-Vergleiche wurden 29 vollständige Hämoglobin-Geneidentifiziert und klassifiziert. Es zeigt sich, daß alle derzeitbekannten Hämoglobin-Gene der Chironomiden auch in Chironomus tentansvorhanden sind. Zusätzlich konnten in Chironomus tentans sechs neueHämoglobin-Varianten identifiziert werden, die bislang weder aufProtein- noch auf Gen-Ebene in anderen Spezies nachgewiesenwurden. Die Hämoglobin-Gene liegen in dichter Abfolge innerhalbdes Clusters, wobei durchschnittlich etwa alle 2 kb ein Gen zufinden ist. Die Abfolge der Hämoglobin-Gene innerhalb derGengruppe wird nur an einer Stelle durch ein interspergiertes Genaus der Familie der Glukosetransporter unterbrochen. Desweiterenkonnten zwei retrotransponierbare Elemente der SINE-Klasse (CP1)innerhalb des Hämoglobingen-Clusters identifiziert werden. AlleGene besitzen die für ihre Expression erforderlichenSignalsequenzen, so daß es sich höchstwahrscheinlich um aktiveGene handelt. Die abgeleiteten Aminosäure-Sequenzen weisen alleCharakteristika sauerstofftransportierender Moleküle auf. Da es sich bei den Hämoglobinen um eine sehr alte Genfamiliehandelt, kann die vergleichende Analyse derHämoglobin-Genstruktur bei Vertebraten, Invertebraten, Pflanzenund Protozoen zur Rekonstruktion der Intron-Evolution genutztwerden. Die Konservierung von Intronpositionen in homologen Genenverschiedener Taxa gilt dabei als Maß für das relativestammesgeschichtliche Alter der Introns. Eine Vielzahl derHämoglobin-Gene von Invertebraten weisen ein Intron im zentralenGenbereich auf. Auch bei einigen Chironomiden-Arten konntendiese 'zentralen Introns' nachgewiesen werden. DieHämoglobin-Gene von Chironomus tentans galten hingegen bislang als intronlos.Die vorliegende Untersuchung zeigt, daß auch zweiHämoglobin-Gene dieser Spezies je ein kurzes Intron aufweisen.Der Vergleich der Intronverteilung in den Hämoglobin-Genen derChironomiden führt zu dem Ergebnis, daß alle vorhandenen Intronsam sparsamsten (im Sinne des 'maximum parsimony'-Prinzips) durchunabhängige Insertionen in ein intronlosesVorläufer-Hämoglobin-Gen erklärt werden können. Alle bislangin Chironomiden beschriebenen Introns sind mit großerWahrscheinlichkeit nicht ortholog (Hankeln et al., 1997; dieseArbeit). Das Vorläufer-Hämoglobin-Gen in Chironomiden besaßdaher vermutlich kein 'zentrales Intron'. Die in Chironomidengefundenen Verhältnisse stellen somit die von Go (1981)formulierte Hypothese der Ursprünglichkeit des 'zentralenIntrons' in Hämoglobin-Genen in Frage. Die in Invertebraten undPflanzen beschriebenen 'zentralen Introns' sind vermutlich nichthomolog und dementsprechend auch nicht auf ein Intron imanzestralen Globin zurückzuführen. Vielmehr implizieren die inhohem Maße variablen Positionen der 'zentralen Introns' beiPflanzen und Invertebraten ihre unabhängige Insertion in diejeweiligen Globin-Gene nach der Aufspaltung der Taxa. Grundsätzlich können zwei Klassen von Hämoglobin-Genen inChironomiden unterschieden werden. Die überwiegende Mehrzahl derHämoglobine wird von Genen kodiert, die nur in einer Kopie imGenom vorliegen. Sie werden dementsprechend als 'single copy'Varianten bezeichnet. Für andere Hämoglobin-Varianten konntehingegen eine Vielzahl leicht unterschiedlicher Gene beschriebenwerden. Diese bilden sogenannte Gen-Subfamilien. In Chironomus tentans konntegezeigt werden, daß neben den 7B-Genen auch die 7A-Gene eineeigene Subfamilie bilden. Die 'single copy' Varianten zeichnensich im Interspezies-Vergleich durch ihre konservierteNukleotid-Sequenz aus: Sie unterliegen während ihrer Evolutionoffenbar einer stabilisierenden Selektion, d.h. Veränderungenihrer Protein-Sequenzen werden nur in geringem Maße toleriert.Auch ihre räumliche Anordnung innerhalb der Gengruppe istzwischenartlich konserviert. Der Vergleich der 'single copy'Varianten innerhalb einer Art zeigt, daß diese sehr deutlicheSequenz-Unterschiede zueinander aufweisen. Sie bilden somit einkonserviertes Sortiment an Hämoglobin-Genen, das weitgehend vorder Radiation der Arten entstanden ist und eine über dieArtgrenzen hinweg unveränderte 'Hämoglobin-Grundausstattung'gewährleistet. Im Gegensatz hierzu zeichnen sich die Mitglieder vonHämoglobin-Gen-Sub-familien durch eine hohe Variabilität aus:Nukleotid-Sequenz, Anzahl und Organisation der Gene innerhalb derGenfamilie weisen im zwischenartlichen Vergleich zahlreicheUnterschiede auf. Es ist daher nur selten möglich allein aufGrundlage der Nukleotid-Sequenzen orthologe Genpaare zuidentifizieren. Die orthologen Gene der 7B-Subfamilie aus Chironomus tentansund chth konnten ausschließlich anhand korrespondierenderIntergen-Sequenzen einander zugeordnet werden. Somit sind dieGen-Subfamilien präferenziell an der Entstehung einesspeziesspezifischen Gen-Repertoires beteiligt. Variationen derNukleotid-Sequenz, Gen-Anzahl und Gen-Organisation innerhalb derSubfamilie werden im Gegensatz zu den 'single copy' Varianten ineinem hohen Maße toleriert. Aufgrund der hohen Sequenz-Übereinstimmungen zwischen denMitgliedern der Gen-Subfamilien unterliegen diese einer Vielzahlvon Rearrangements, die in Gen-Duplikationen, Deletionen undSequenz-Homogenisierungen resultieren. So führten beispielsweiseGenduplikationen durch ungleiches, homologes Crossing-over mitgroßer Wahrscheinlichkeit zur Entstehung und Expansion der7A-Subfamilie. Auch die Gene Cte12-1 und Cte 12-2 sind vermutlichdas Ergebnis eines rezenten Duplika-tions-Ereignisses. DerMechanismus der Retrotransposition, der zu einer Duplika-tioneines 3`-untranslatierten Bereichs innerhalb der 7A-Subfamilieführte, scheint für die Entstehung derHämoglobin-Multiplizität in Chironomiden hingegen wenigerbedeutsam zu sein. Innerhalb der 7A-Subfamilie ist eineAngleichung der Gene durch konzertierte Sequenz-Evolution zubeobachten. Der nukleotidweise Vergleich von Gen-Sequenzen zeigtam Beispiel der Gene 7A7 und 7A8, daß die konzertierte Evolutiondieser Gen-Varianten auf dem Mechanismus der Genkonversionberuht. Auch die Gen-Subfamilie 7B unterliegt offenbar in hohemMaße einer solchen Sequenz-Homogenisierung. Im Sinne einer molekularen Uhr sollten synonyme Basenaustauscheweitgehend neutral sein und sich proportional zur Zeit in denGenen anhäufen. Der Vergleich der Hämoglobin-Gen-Sequenzenzeigt, daß große Unterschiede in der Anzahl der synonymenBasenaustausche zwischen orthologen Genen nicht zwangsläufig dasErgebnis einer frühen Trennung dieser Gene sind. Die Übertragungvon Sequenzen zwischen paralogen Genen kann die Anzahl dersynonymen Basenaustausche orthologer Gene in kürzester Zeitverändern und den tatsächlichen Zeitpunkt der Trennung zweierorthologen Gene überdecken. Werden Genkonversionen nichterkannt, weil beispielsweise nicht alle Gene der Gruppevollständig erfaßt werden konnten, führt der Vergleichorthologer Gen-Sequenzen zwangsläufig zu falschen evolutionärenGendistanzen. Da die Mitglieder der Hämoglobin-Genfamiliebesonders häufig Rekombinations-Prozessen unterliegen, sind siedaher möglicherweise weniger nützliche Kanditaten für dieErmittlung evolutionärer Distanzen zwischen den verschiedenenChironomiden-Arten. Insgesamt zeigen die Ergebnisse dieser Arbeit, daß anhanddetaillierter phylogenetischer Analysen sich die Evolution derHämoglobin-Multigenfamilie von Chironomiden umfassendbeschreiben läßt. Ob einzelne, besonders gut konservierteGen-Varianten (wie z. B. die Gene Cte 8 und Cte W) einespezifische physiologische Funktion erfüllen oder ob dieGen-Subfamilien, die ein speziesspezifisches Genrepertoirebilden, an der Einnischung der verschiedenen Arten beteiligtsind, sollte durch weiterführende Untersuchungen (z. B. derGenexpression sowie der physiologischen Eigenschaften einzelnerVarianten) ermittelt werden können.
Resumo:
Immuntherapien stellen basierend auf gut charakterisierten, tumorspezifischen Antigenen ein vielversprechendes Konzept in der Tumor-Therapie dar. Für das kutane T-Zell Lymphom (CTCL) sind bislang nur wenige tumorassoziierte Antigene bekannt. In dieser Arbeit konnten ein mögliches Onkogen (PAR-3ta), ein weiteres, putativ Virus-induziertes Antigen (se57-1), neue Antigene und ihre Splicing-Varianten (se70-2, cTAGE-1/2, cTAGE-5), sowie lymphozytenspezifische Differenzierungsantigene (se20-10-Familie) für das CTCL gefunden werden. Auf Grund des Cancer-Testis spezifischen Expressionsprofils kommen die Antigene cTAGE-1 (46% CTCL-Expression), cTAGE-1B (31%) und cTAGE-5A (44%) für eine CTCL-Immuntherapie in Frage. Einige bekannte, spezifische Tumorantigene konnten auch im CTCL nachgewiesen werden: MAGE-A9 (21%), GAGE 3-7b (46%) und MUC-1 (44%). Die Immunogenität konnte mittels der SEREX-Technologie durch reaktive Antikörper gegen rekombinantes MAGE-A9 in 22% der getesteten CTCL-Seren, gegen GAGE in 16% und gegen cTAGE-5A in 15% bewiesen werden. Die cTAGE-mRNAs bilden eine neue Cancer-Testis Antigenfamilie. Die Multigenfamilie ist durch Retrotransposition eines aktiven Gens (cTAGE-5) entstanden, wobei 7 aktive, transkribierte und 7 nicht transkribierte Pseudogene unterschieden werden müssen. Die aktiven Gene cTAGE-1, cTAGE-1B und cTAGE-5A werden tumorspezifisch aus den Chromosomen 18p11.2 und 14 gespliced. Die Testis-CTCL spezifischen mRNAs können häufig auch in anderen Tumoren gefunden werden. Die Antigene cTAGE-1, cTAGE-5, MAGE-A9 und GAGE 3-7b gehören zu den ersten spezifischen Zielstrukturen des CTCLs, die somit für mögliche Immuntherapien in Betracht kommen.