969 resultados para retinoid X receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoid X receptor (RXR)/ultraspiracle (USP) is the heterodimeric partner of ecdysteroid receptor and is required for the molting process of arthropods. To better understand the molecular aspects governing the process of molting in shrimp, the full-length cDNA of two RXRs, named as FcRXR-1 and FcRXR-2 were obtained from Chinese shrimp Fenneropenaeus chinensis which were of 1715 and 1700 bp long, revealed a 1315 and 1300 bp open reading frame (ORF) respectively. Quantitative Real time PCR analysis showed a marked tissue-specific difference in the expression of FcRXR transcript, which revealed that the expression of FcRXR Could be regulated in a tissue-specific manner. Moreover, high expression of FcRXR mRNAs was observed in late pre-molt period (D3) and post molt stages (A-B) of shrimp. Among the two isoforms, FcRXR-2 appeared in a considerably high level in all the stages compared to the FcRXR-1. In addition, we examined the temporal expression of two chitinase genes: FcChitinase (FcChi) and FcChitinase-1 (FcChi-1) during the molt cycle of F chinensis. Both the FcChi and FcChi-1 transcripts were detected in all stages of molting, although considerable fluctuations observed through the molt cycle. Injection of double stranded RXR (dsRXR) into juvenile shrimp resulted in a maximum silencing effect at 48 h post injection. We analyzed the expression levels of FcChi, FcChi-1 and the ecdysone inducible gene E75 (FcE75) in samples of dsRXR injected shrimp. Significant reduction in levels of both FcE75, FcChi and FcChi-1 transcripts Occurred in the silenced shrimp. This correlation suggested that RXR might involve in the downstream regulation of E75 and chitinase gene transcription in the ecdysone signaling pathway of decapod crustaceans. (C) 2009 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本论文主要研究两种重要的调节蜕皮过程的基因—蜕皮激素效应基因E75和RXR在中国明对虾蜕皮中的作用。利用RT-PCR和RACE技术获得了编码FcE75和FcRXR的全长cDNA序列。FcRXR包含7个内含子,在对虾中存在不同的异形体,命名为RXR-1和RXR-2。应用荧光实时定量PCR分析表明FcE75和FcRXR基因在中国明对虾蜕皮前期(D3)其转录表达量明显上调。另外,FcE75和FcRXR基因在不同组织中的转录表达存在明显的差异。利用FcE75和FcRXR基因的双链RNA注射对虾能有效降低FcE75和FcRXR的表达水平。FcE75和FcRXR的体内沉默完全抑制了对虾的蜕皮过程,并且引起对虾的死亡。对不能正常蜕皮个体进行观察的结果表明,FcE75沉默的对虾,其上皮的收缩、新的刚毛及新表皮的形成均收到限制。在FcE75双链RNA沉默后的对虾中,我们检测了与蜕皮相关的一些效应因子,如chitinase等的转录,发现这些效应因子的转录明显受到抑制,说明FcE75和FcRXR在蜕皮过程中起到非常重要的作用。本论文首次阐明了这些基因在十足目甲壳动物蜕皮过程中的功能。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of central nervous system remyelination declines with age. This is in part due to an age-associated decline in the phagocytic removal of myelin debris, which contains inhibitors of oligodendrocyte progenitor cell differentiation. In this study, we show that expression of genes involved in the retinoid X receptor pathway are decreased with ageing in both myelin-phagocytosing human monocytes and mouse macrophages using a combination of in vivo and in vitro approaches. Disruption of retinoid X receptor function in young macrophages, using the antagonist HX531, mimics ageing by reducing myelin debris uptake. Macrophage-specific RXRα (Rxra) knockout mice revealed that loss of function in young mice caused delayed myelin debris uptake and slowed remyelination after experimentally-induced demyelination. Alternatively, retinoid X receptor agonists partially restored myelin debris phagocytosis in aged macrophages. The agonist bexarotene, when used in concentrations achievable in human subjects, caused a reversion of the gene expression profile in multiple sclerosis patient monocytes to a more youthful profile and enhanced myelin debris phagocytosis by patient cells. These results reveal the retinoid X receptor pathway as a positive regulator of myelin debris clearance and a key player in the age-related decline in remyelination that may be targeted by available or newly-developed therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPAR beta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXR alpha, and RXR beta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families. (C) 2007 by The American Society of Hematology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity, diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin in the 1958 British Birth Cohort (1958BC, up to n = 5,231). We used Multifactor- dimensionality reduction (MDR) program as a non-parametric test to examine for potential interactions between the VDR and RXRG gene polymorphisms in the 1958BC. We used the data from Northern Finland Birth Cohort 1966 (NFBC66, up to n = 5,316) and Twins UK (up to n = 3,943) to replicate our initial findings from 1958BC. RESULTS: After Bonferroni correction, the joint-likelihood ratio test suggested interactions on serum triglycerides (4 SNP - SNP pairs), LDL cholesterol (2 SNP - SNP pairs) and WHR (1 SNP - SNP pair) in the 1958BC. MDR permutation model testing analysis showed one two-way and one three-way interaction to be statistically significant on serum triglycerides in the 1958BC. In meta-analysis of results from two replication cohorts (NFBC66 and Twins UK, total n = 8,183), none of the interactions remained after correction for multiple testing (Pinteraction >0.17). CONCLUSIONS: Our results did not provide strong evidence for interactions between allelic variations in VDR and RXRG genes on metabolic outcomes; however, further replication studies on large samples are needed to confirm our findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All-trans and 9-cis retinoic acids (RA) signals are transduced by retinoic acid receptor/retinoid X receptor (RAR/RXR) heterodimers that act as functional units controlling the transcription of RA-responsive genes. With the aim of elucidating the underlying molecular mechanisms, we have developed an in vitro transcription system using a chromatin template made up of a minimal promoter and a direct repeat with 5-spacing-based RA response element. RARα and RXRα were expressed in and purified from baculovirus-infected Sf9 cells, and transcription was carried out by using naked DNA or chromatin templates. Transcription from naked templates was not affected by the presence of RA and/or RAR/RXR heterodimers. In contrast, very little transcription occurred from chromatin templates in the absence of RA or RAR/RXR heterodimers whereas their addition resulted in a dosage-dependent stimulation of transcription that never exceeded that occurring on naked DNA templates. Most importantly, the addition of synthetic agonistic or antagonistic retinoids to the chromatin transcription system mimicked their stimulatory or inhibitory action in vivo, and activation by a RXR-specific retinoid was subordinated to the binding of an agonist ligand to the RAR partner. Moreover, the addition of the p300 coactivator generated a synergistic enhancement of transcription. Thus, the dissection of this transcription system ultimately should lead to the elucidation of the molecular mechanisms by which RAR/RXR heterodimers control transcription in a ligand-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common feature of many metabolic pathways is their control by retinoid X receptor (RXR) heterodimers. Dysregulation of such metabolic pathways can lead to the development of atherosclerosis, a disease influenced by both systemic and local factors. Here we analyzed the effects of activation of RXR and some of its heterodimers in apolipoprotein E −/− mice, a well established animal model of atherosclerosis. An RXR agonist drastically reduced the development of atherosclerosis. In addition, a ligand for the peroxisome proliferator-activated receptor (PPAR)γ and a dual agonist of both PPARα and PPARγ had moderate inhibitory effects. Both RXR and liver X receptor (LXR) agonists induced ATP-binding cassette protein 1 (ABC-1) expression and stimulated ABC-1-mediated cholesterol efflux from macrophages from wild-type, but not from LXRα and β double −/−, mice. Hence, activation of ABC-1-mediated cholesterol efflux by the RXR/LXR heterodimer might contribute to the beneficial effects of rexinoids on atherosclerosis and warrant further evaluation of RXR/LXR agonists in prevention and treatment of atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Drosophila homolog of the retinoid X receptor, ultraspiracle (USP), heterodimerizes with the ecdysone receptor (EcR) to form a functional complex that mediates the effects of the steroid molting hormone ecdysone by activating and repressing expression of ecdysone response genes. As with other retinoid X receptor heterodimers, EcR/USP affects gene transcription in a ligand-modulated manner. We used in vivo, cell culture, and biochemical approaches to analyze the functions of two usp alleles, usp3 and usp4, which encode stable proteins with defective DNA-binding domains. We observed that USP is able to activate as well as repress the Z1 isoform of the ecdysone-responsive broad complex (BrC-Z1). Activation of BrC-Z1 as well as EcR, itself an ecdysone response gene, can be mediated by both the USP3 and USP4 mutant proteins. USP3 and USP4 also activate an ecdysone-responsive element, hsp27EcRE, in cultured cells. These results differ from the protein null allele, usp2, which is unable to mediate activation [Schubiger, M. & Truman, J. W. (2000) Development 127, 1151–1159]. BrC-Z1 repression is compromised in all three usp alleles, suggesting that repression involves the association of USP with DNA. Our results distinguish two mechanisms by which USP modulates the properties of EcR: one that involves the USP DNA-binding domain and one that can be achieved solely through the ligand-binding domain. These newly revealed properties of USP might implicate similar properties for retinoid X receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are involved in a number of signaling pathways as heterodimeric partners of numerous nuclear receptors. Hepatocytes express high levels of the RXRα isotype, as well as several of its putative heterodimeric partners. Germ-line disruption (knockout) of RXRα has been shown to be lethal in utero, thus precluding analysis of its function at later life stages. Hepatocyte-specific disruption of RXRα during liver organogenesis has recently revealed that the presence of hepatocytes is not mandatory for the mouse, at least under normal mouse facility conditions, even though a number of metabolic events are impaired [Wan, Y.-J., et al. (2000) Mol. Cell. Biol. 20, 4436–4444]. However, it is unknown whether RXRα plays a role in the control of hepatocyte proliferation and lifespan. Here, we report a detailed analysis of the liver of mice in which RXRα was selectively ablated in adult hepatocytes by using the tamoxifen-inducible chimeric Cre recombinase system. Our results show that the lifespan of adult hepatocytes lacking RXRα is shorter than that of their wild-type counterparts, whereas proliferative hepatocytes of regenerating liver exhibit an even shorter lifespan. These lifespan shortenings are accompanied by increased polyploidy and multinuclearity. We conclude that RXRα plays important cell-autonomous function(s) in the mechanism(s) involved in the lifespan of hepatocytes and liver regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoids exert pleiotropic effects on the development of vertebrates through the action of retinoic acid receptors (RAR) and retinoid X receptors (RXR). We have investigated the effect of synthetic retinoids selective for RXR and RAR on the development of Xenopus and zebrafish embryos. In Xenopus, both ligands selective for RAR and RXR caused striking malformations along the anterior-posterior axis, whereas in zebrafish only ligands specific for RAR caused embryonic malformations. In Xenopus, RAR- and RXR-selective ligands regulated the expression of the Xlim-1, gsc, and HoxA1 genes similarly as all-trans-retinoic acid. Nevertheless, RXR-selective ligands activated only an RXR responsive reporter but not an RAR responsive reporter introduced by microinjection into the Xenopus embryo, consistent with our failure to detect conversion of an RXR-selective ligand to different derivatives in the embryo. These results suggest that Xenopus embryos possess a unique response pathway in which liganded RXR can control gene expression. Our observations further illustrate the divergence in retinoid responsiveness between different vertebrate species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein-protein interactions allow the retinoid X receptor (RXR) to bind to cognate DNA as a homo- or a heterodimer and to participate in mediating the effects of a variety of hormones on gene transcription. Here we report a systematic study of the oligomeric state of RXR in the absence of a DNA template. We have used electrophoresis under nondenaturing conditions and chemical crosslinking to show that in solution, RXR alpha forms homodimers as well as homotetramers. The dissociation constants governing dimer and tetramer formation were estimated by fluorescence anisotropy studies. The results indicate that RXR tetramers are formed with a high affinity and that at protein concentrations higher than about 70 nM, tetramers will constitute the predominant species. Tetramer formation may provide an additional level of the regulation of gene transcription mediated by RXRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retinoid X receptor (RXR) participates in a wide array of hormonal signaling pathways, either as a homodimer or as a heterodimer, with other members of the steroid and thyroid hormone receptor superfamily. In this report the ligand-dependent transactivation function of RXR has been characterized, and the ability of RXR to interact with components of the basal transcription machinery has been examined. In vivo and in vitro experiments indicate the RXR ligand-binding domain makes a direct, specific, and ligand-dependent contact with a highly conserved region of the TATA-binding protein. The ability of mutations that reduce ligand-dependent transcription by RXR to disrupt the RXR-TATA-binding protein interaction in vivo and in vitro suggests that RXR makes direct contact with the basal transcription machinery to achieve activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently characterized a cardiac model of ventricular chamber defects in retinoid X receptor alpha (RXR alpha) homozygous mutant (-/-) gene-targeted mice. These mice display generalized edema, ventricular chamber hypoplasia, and muscular septal defects, and they die at embryonic day 15. To substantiate our hypothesis that the embryos are dying of cardiac pump failure, we have used digital bright-field and fluorescent video microscopy and in vivo microinjection of fluorescein-labeled albumin to analyze cardiac function. The affected embryos showed depressed ventricular function (average left ventricular area ejection fraction, 14%), ventricular septal defects, and various degrees of atrioventricular block not seen in the RXR alpha wild-type (+/+) and heterozygous (+/-) littermates (average left ventricular area ejection fraction, 50%). The molecular mechanisms involved in these ventricular defects were studied by evaluating expression of cardiac-specific genes known to be developmentally regulated. By in situ hybridization, aberrant, persistent expression of the atrial isoform of myosin light chain 2 was identified in the ventricles. We hypothesize that retinoic acid provides a critical signal mediated through the RXR alpha pathway that is required to allow progression of development of the ventricular region of the heart from its early atrial-like form to the thick-walled adult ventricle. The conduction system disturbances found in the RXR alpha -/- embryos may reflect a requirement of the developing conduction system for the RXR alpha signaling pathway, or it may be secondary to the failure of septal development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoid therapy has been successful for the treatment of skin squamous cell carcinoma (SCC). A suppression of the predominant retinoid X receptor expressed in skin, retinoid X receptor α (RXRα), has been reported in skin SCC. These observations have led to the hypothesis that retinoid receptor loss contributes to the tumorigenic phenotype of epithelial cancers. To test this hypothesis, the RXRα gene was mapped in order to generate a targeting construct. Additionally the transcriptional regulation of the human RXRα a gene in keratinocytes was characterized after identifying the transcription initiation sites, the promoter, and enhancer regions of this gene. The structure is highly conserved between human and mouse. A nontumorigenic human skin-derived cell line called near diploid immortalized keratinocytes (NIKS) has the advantage of growing as organotypic raft cultures, under physiological conditions closely resembling in-vivo squamous stratification. We have exploited the raft culture technique to develop an in-vitro model for skin SCC progression that includes the NIKS cells, HaCaT cells, a premalignant cell line, and SRB 12-p9 cells, a tumorigenic SCC skin cell line. The differentiation, proliferation and nuclear receptor ligand response characteristics of this system were studied and significant and novel results were obtained. RXRs are obligate heterodimerization partners with many of the nuclear hormone receptors, including retinoic acid receptors (RARs), vitamin D3 receptors (VDR), thyroid hormone receptors (T3 R) and peroxisome proliferator activate receptors (PPARs), which are all known to be active in skin. Treatment of the three cell lines in raft culture with the RXR specific ligand BMS649, BMS961 (RARγ-specific), vitamin D3 (VDR ligand), thryoid hormone (T3R ligand) and clofibrate (PPARa ligand), and the combination of BMS649 with each of the 4 receptor partner ligands, resulted in distinct effects on differentiation, proliferation and apoptosis. The effects of activation of RXRs in each of the four-receptor pathways; in the context of skin SCC progression, with an emphasis on the VDR/RXR pathway, are discussed. These studies will lead to a better understanding of RXRα action in human skin and will help determine its role in SCC tumorigenesis, as well as its potential as a target for the prevention, treatment, and control of skin cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.