948 resultados para retinal nerve fibre layer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims:  To investigate the relationship between retinal nerve fibre layer thickness and peripheral neuropathy in patients with Type 2 diabetes, particularly in those who are at higher risk of foot ulceration. Methods:  Global and sectoral retinal nerve fibre layer thicknesses were measured at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). The level of neuropathy was assessed in 106 participants (82 with Type 2 diabetes and 24 healthy controls) using the 0–10 neuropathy disability score. Participants were stratified into four neuropathy groups: none (0–2), mild (3–5), moderate (6–8), and severe (9–10). A neuropathy disability score ≥ 6 was used to define those at higher risk of foot ulceration. Multivariable regression analysis was performed to assess the effect of neuropathy disability scores, age, disease duration and retinopathy on RNFL thickness. Results:  Inferior (but not global or other sectoral) retinal nerve fibre layer thinning was associated with higher neuropathy disability scores (P = 0.03). The retinal nerve fibre layer was significantly thinner for the group with neuropathy disability scores ≥ 6 in the inferior quadrant (P < 0.005). Age, duration of disease and retinopathy levels did not significantly influence retinal nerve fibre layer thickness. Control participants did not show any significant differences in thickness measurements from the group with diabetes and no neuropathy (P > 0.24 for global and all sectors). Conclusions:  Inferior quadrant retinal nerve fibre layer thinning is associated with peripheral neuropathy in patients with Type 2 diabetes, and is more pronounced in those at higher risk of foot ulceration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose To evaluate the association between retinal nerve fibre layer (RNFL) thickness and diabetic peripheral neuropathy in people with type 2 diabetes, and specifically those at higher risk of foot ulceration. Methods RNFL thicknesses was measured globally and in four quadrants (temporal, superior, nasal and inferior) at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). Severity of neuropathy was assessed using the Neuropathy Disability Score (NDS). Eighty-two participants with type 2 diabetes were stratified according to NDS scores (0-10) as: none, mild, moderate, and severe neuropathy. A control group was additionally included (n=17). Individuals with NDS≥ 6 (moderate and severe neuropathy) have been shown to be at higher risk of foot ulceration. A linear regression model was used to determine the association between RNFL and severity of neuropathy. Age, disease duration and diabetic retinopathy levels were fitted in the models. Independent t-test was employed for comparison between controls and the group without neuropathy, as well as for comparison between groups with higher and lower risk of foot ulceration. Analysis of variance was used to compare across all NDS groups. Results RNFL thickness was significantly associated with NDS in the inferior quadrant (b= -1.46, p=0.03). RNFL thicknesses globally and in superior, temporal and nasal quadrants did not show significant associations with NDS (all p>0.51). These findings were independent of the effect of age, disease duration and retinopathy. RNFL was thinner for the group with NDS ≥ 6 in all quadrants but was significant only inferiorly (p<0.005). RNFL for control participants was not significantly different from the group with diabetes and no neuropathy (superior p=0.07, global and all other quadrants: p>0.23). Mean RNFL thickness was not significantly different between the four NDS groups globally and in all quadrants (p=0.08 for inferior, P>0.14 for all other comparisons). Conclusions Retinal nerve fibre layer thinning is associated with neuropathy in people with type 2 diabetes. This relationship is strongest in the inferior retina and in individuals at higher risk of foot ulceration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/AIM: To compare the ability of confocal scanning laser tomography (CSLT), scanning laser polarimetry (SLP) and optical coherence tomography (OCT) in recognising localised retinal nerve fibre layer (RNFL) defects. METHODS: 51 eyes from 43 patients with glaucoma were identified by two observers as having RNFL defects visible on optic disc photographs. 51 eyes of 32 normal subjects were used as controls. Three masked observers evaluated CSLT, SLP and OCT images to determine subjectively the presence of localised RNFL defects. RESULTS: Interobserver agreement was highest with OCT, followed by SLP and CSLT (mean kappa: 0.83, 0.69 and 0.64, respectively). RNFL defects were identified in 58.8% of CSLT, 66.7% of SLP and 54.9% of OCT (p = 0.02 between SLP and OCT) by at least two observers. In the controls, 94.1% of CSLT, 84.3% of SLP and 94.1% of OCT scans, respectively, were rated as normal (p = 0.02 between CSLT and SLP, and SLP and OCT). CONCLUSION: Approximately 20-40% of localised RNFL defects identified by colour optic disc photographs are not detected by CSLT, SPL or OCT. SLP showed a higher number of false-positive results than the other techniques, but also had a higher proportion of correctly identified RNFL defects in the glaucoma population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The authors estimated the retinal nerve fiber layer height (RNFLH) measurements in patients with glaucoma compared with those in age-matched healthy subjects as obtained by the laser scanning tomography and assessed the relationship between RNFLH measurements and optic and visual field status. Methods: Parameters of optic nerve head topography and RNFLH were evaluated in 125 eyes of 21 healthy subjects and 104 patients with glaucoma using the Heidelberg Retina Tomograph ([HRT] Heidelberg Engineering GmbH, Heidelberg, Germany) for the entire disc area and for the superior 70°(50°temporal and 20°nasal to the vertical midline) and inferior 70°sectors of the optic disc. The mean deviation of the visual field, as determined by the Humphrey program 24-2 (Humphrey Instruments, Inc., San Leonardo, CA, U.S.A) was calculated in the entire field and in the superior and inferior Bjerrum area. Result: Retinal nerve fiber layer height parameters (mean RNFLH and RNFL cross-sectional area) were decreased significantly in patients with glaucoma compared with healthy individuals. Retinal nerve fiber layer height parameters was correlated strongly with rim volume, rim area, and cup/disc area ratio. Of the various topography measures, retinal nerve fiber layer (RNFL) parameters and cup/disc area ratio showed the strongest correlation with visual field mean deviation in patients with glaucoma. Conclusion: Retinal nerve fiber layer height measures were reduced substantially in patients with glaucoma compared with age-matched healthy subjects. Retinal nerve fiber layer height was correlated strongly with topographic optic disc parameters and visual field changes in patients with glaucoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To describe retinal nerve fiber layer changes in late-stage diffuse unilateral subacute neuroretinitis eyes and compare these results with healthy eyes observed through nerve fiber analyzer (GDx®). Methods: This is a retrospective case-control study in which 49 eyes in late-stage diffuse unilateral subacute neuroretinitis were examined from May/97 to December/ 01. First, eyes with diffuse unilateral subacute neuroretinitis and healthy contralateral eyes (Control Group I) were statistically matched. Subsequently, eyes with diffuse unilateral subacute neuroretinitis were compared with eyes of healthy patients (Control Group II). Results: Eyes from Control Groups I and II had higher relative frequency of “within normal limits” status. Eyes from the diffuse unilateral subacute neuroretinitis (DUSN) Group had higher frequency of “outside normal limits” and “borderline” status. Control Groups I and II had absolute values different from the DUSN Group regarding all parameters (p<0.05), except for Symmetry in Control Groups I and II, Average thickness and Superior Integral in control group II. Conclusion: Patients with late-stage diffuse unilateral subacute neuroretinitis presented presumed decrease in nerve fiber layer thickness shown by GDx®. Retinal zones with larger vascular support and larger amount of nerve fibers presented higher decrease in the delay of the reflected light measured by the nerve fiber analyzer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the possible associations between corneal biomechanical parameters, optic disc morphology, and retinal nerve fiber layer (RNFL) thickness in healthy white Spanish children. Methods: This cross-sectional study included 100 myopic children and 99 emmetropic children as a control group, ranging in age from 6 to 17 years. The Ocular Response Analyzer was used to measure corneal hysteresis (CH) and corneal resistance factor. The optic disc morphology and RNFL thickness were assessed using posterior segment optical coherence tomography (Cirrus HD-OCT). The axial length was measured using an IOLMaster, whereas the central corneal thickness was measured by anterior segment optical coherence tomography (Visante OCT). Results: The mean (±SD) age and spherical equivalent were 12.11 (±2.76) years and −3.32 (±2.32) diopters for the myopic group and 11.88 (±2.97) years and +0.34 (±0.41) diopters for the emmetropic group. In a multivariable mixed-model analysis in myopic children, the average RNFL thickness and rim area correlated positively with CH (p = 0.007 and p = 0.001, respectively), whereas the average cup-to-disc area ratio correlated negatively with CH (p = 0.01). We did not observe correlation between RNFL thickness and axial length (p = 0.05). Corneal resistance factor was only positively correlated with the rim area (p = 0.001). The central corneal thickness did not correlate with the optic nerve parameters or with RNFL thickness. These associations were not found in the emmetropic group (p > 0.05 for all). Conclusions: The corneal biomechanics characterized with the Ocular Response Analyzer system are correlated with the optic disc profile and RNFL thickness in myopic children. Low CH values may indicate a reduction in the viscous dampening properties of the cornea and the sclera, especially in myopic children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal microcirculatory changes are useful markers in patients suffering from hypertension and other cardiovascular disorders. Conversely, localized retinal nerve fiber layer defects (RNFLDs) are less frequently explored in association with hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To describe retinal nerve fiber layer changes in late-stage diffuse unilateral subacute neuroretinitis eyes and compare these results with healthy eyes observed through nerve fiber analyzer (GDx®). Methods: This is a retrospective case-control study in which 49 eyes in late-stage diffuse unilateral subacute neuroretinitis were examined from May/97 to December/ 01. First, eyes with diffuse unilateral subacute neuroretinitis and healthy contralateral eyes (Control Group I) were statistically matched. Subsequently, eyes with diffuse unilateral subacute neuroretinitis were compared with eyes of healthy patients (Control Group II). Results: Eyes from Control Groups I and II had higher relative frequency of “within normal limits” status. Eyes from the diffuse unilateral subacute neuroretinitis (DUSN) Group had higher frequency of “outside normal limits” and “borderline” status. Control Groups I and II had absolute values different from the DUSN Group regarding all parameters (p<0.05), except for Symmetry in Control Groups I and II, Average thickness and Superior Integral in control group II. Conclusion: Patients with late-stage diffuse unilateral subacute neuroretinitis presented presumed decrease in nerve fiber layer thickness shown by GDx®. Retinal zones with larger vascular support and larger amount of nerve fibers presented higher decrease in the delay of the reflected light measured by the nerve fiber analyzer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To describe retinal nerve fiber layer changes in late-stage diffuse unilateral subacute neuroretinitis eyes and compare these results with healthy eyes observed through nerve fiber analyzer (GDx®). Methods: This is a retrospective case-control study in which 49 eyes in late-stage diffuse unilateral subacute neuroretinitis were examined from May/97 to December/ 01. First, eyes with diffuse unilateral subacute neuroretinitis and healthy contralateral eyes (Control Group I) were statistically matched. Subsequently, eyes with diffuse unilateral subacute neuroretinitis were compared with eyes of healthy patients (Control Group II). Results: Eyes from Control Groups I and II had higher relative frequency of “within normal limits” status. Eyes from the diffuse unilateral subacute neuroretinitis (DUSN) Group had higher frequency of “outside normal limits” and “borderline” status. Control Groups I and II had absolute values different from the DUSN Group regarding all parameters (p<0.05), except for Symmetry in Control Groups I and II, Average thickness and Superior Integral in control group II. Conclusion: Patients with late-stage diffuse unilateral subacute neuroretinitis presented presumed decrease in nerve fiber layer thickness shown by GDx®. Retinal zones with larger vascular support and larger amount of nerve fibers presented higher decrease in the delay of the reflected light measured by the nerve fiber analyzer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to develop and validate a multivariate predictive model to detect glaucoma by using a combination of retinal nerve fiber layer (RNFL), retinal ganglion cell-inner plexiform (GCIPL), and optic disc parameters measured using spectral-domain optical coherence tomography (OCT). Methods: Five hundred eyes from 500 participants and 187 eyes of another 187 participants were included in the study and validation groups, respectively. Patients with glaucoma were classified in five groups based on visual field damage. Sensitivity and specificity of all glaucoma OCT parameters were analyzed. Receiver operating characteristic curves (ROC) and areas under the ROC (AUC) were compared. Three predictive multivariate models (quantitative, qualitative, and combined) that used a combination of the best OCT parameters were constructed. A diagnostic calculator was created using the combined multivariate model. Results: The best AUC parameters were: inferior RNFL, average RNFL, vertical cup/disc ratio, minimal GCIPL, and inferior-temporal GCIPL. Comparisons among the parameters did not show that the GCIPL parameters were better than those of the RNFL in early and advanced glaucoma. The highest AUC was in the combined predictive model (0.937; 95% confidence interval, 0.911–0.957) and was significantly (P = 0.0001) higher than the other isolated parameters considered in early and advanced glaucoma. The validation group displayed similar results to those of the study group. Conclusions: Best GCIPL, RNFL, and optic disc parameters showed a similar ability to detect glaucoma. The combined predictive formula improved the glaucoma detection compared to the best isolated parameters evaluated. The diagnostic calculator obtained good classification from participants in both the study and validation groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes is an increasingly prevalent disease worldwide. Providing early management of the complications can prevent morbidity and mortality in this population. Peripheral neuropathy, a significant complication of diabetes, is the major cause of foot ulceration and amputation in diabetes. Delay in attending to complication of the disease contributes to significant medical expenses for diabetic patients and the community. Early structural changes to the neural components of the retina have been demonstrated to occur prior to the clinically visible retinal vasculature complication of diabetic retinopathy. Additionally visual functionloss has been shown to exist before the ophthalmoscopic manifestations of vasculature damage. The purpose of this thesis was to evaluate the relationship between diabetic peripheral neuropathy and both retinal structure and visual function. The key question was whether diabetic peripheral neuropathy is the potential underlying factor responsible for retinal anatomical change and visual functional loss in people with diabetes. This study was conducted on a cohort with type 2 diabetes. Retinal nerve fibre layer thickness was assessed by means of Optical Coherence Tomography (OCT). Visual function was assessed using two different methods; Standard Automated Perimetry (SAP) and flicker perimetry were performed within the central 30 degrees of fixation. The level of diabetic peripheral neuropathy (DPN) was assessed using two techniques - Quantitative Sensory Testing and Neuropathy Disability Score (NDS). These techniques are known to be capable of detecting DPN at very early stages. NDS has also been shown as a gold standard for detecting 'risk of foot ulceration'. Findings reported in this thesis showed that RNFL thickness, particularly in the inferior quadrant, has a significant association with severity of DPN when the condition has been assessed using NDS. More specifically it was observed that inferior RNFL thickness has the ability to differentiate individuals who are at higher risk of foot ulceration from those who are at lower risk, indicating that RNFL thickness can predict late-staged DPN. Investigating the association between RNFL and QST did not show any meaningful interaction, which indicates that RNFL thickness for this cohort was not as predictive of neuropathy status as NDS. In both of these studies, control participants did not have different results from the type 2 cohort who did not DPN suggesting that RNFL thickness is not a marker for diagnosing DPN at early stages. The latter finding also indicated that diabetes per se, is unlikely to affect the RNFL thickness. Visual function as measured by SAP and flicker perimetry was found to be associated with severity of peripheral neuropathy as measured by NDS. These findings were also capable of differentiating individuals at higher risk of foot ulceration; however, visual function also proved not to be a maker for early diagnosis of DPN. It was found that neither SAP, nor flicker sensitivity have meaningful associations with DPN when neuropathy status was measured using QST. Importantly diabetic retinopathy did not explain any of the findings in these experiments. The work described here is valuable as no other research to date has investigated the association between diabetic peripheral neuropathy and either retinal structure or visual function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose To investigate the application of retinal nerve fibre layer (RNFL) thickness as a marker for severity of diabetic peripheral neuropathy (DPN) in people with Type 2 diabetes. Methods This was a cross-sectional study whereby 61 participants (mean age 61 [41-75 years], mean duration of diabetes 14 [1-40 years], 70% male) with Type 2 diabetes and DPN underwent optical coherence tomography (OCT) scans. Global and 4 quadrant (TSNI) RNFL thicknesses were measured at 3.45mm around the optic nerve head of one eye. Neuropathy disability score (NDS) was used to assess the severity of DPN on a 0 to 10 scale. Participants were divided into three age-matched groups representing mild (NDS=3-5), moderate (NDS=6-8) and severe (NDS=9-10) neuropathy. Two regression models were fitted for statistical analysis: 1) NDS scores as co-variate for global and quadrant RNFL thicknesses, 2) NDS groups as a factor for global RNFL thickness only. Results Mean (SD) RNFL thickness (µm) was 103(9) for mild neuropathy (n=34), 101(10) for moderate neuropathy (n=16) and 95(13) in the group with severe neuropathy (n=11). Global RNFL thickness and NDS scores were statistically significantly related (b=-1.20, p=0.048). When neuropathy was assessed across groups, a trend of thinner mean RNFL thickness was observed with increasing severity of neuropathy; however, this result was not statistically significant (F=2.86, p=0.065). TSNI quadrant analysis showed that mean RNFL thickness reduction in the inferior quadrant was 2.55 µm per 1 unit increase in NDS score (p=0.005). However, the regression coefficients were not statistically significant for RNFL thickness in the superior (b=-1.0, p=0.271), temporal (b=-0.90, p=0.238) and nasal (b=-0.99, p=0.205) quadrants. Conclusions RNFL thickness was reduced with increasing severity of DPN and the effect was most evident in the inferior quadrant. Measuring RNFL thickness using OCT may prove to be a useful, non-invasive technique for identifying severity of DPN and may also provide additional insight into common mechanisms for peripheral neuropathy and RNFL damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using retinal imaging, the nature and extent of compromise of retinal structural integrity has been characterized in individuals suffering from diabetic peripheral neuropathy. These findings extend our understanding of the pathological processes involved in diabetic neuropathy and offer novel ophthalmic approaches to the diagnosis and monitoring of this debilitating condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose : To investigate the application of retinal nerve fibre layer (RNFL) thickness as a marker for severity of diabetic peripheral neuropathy (DPN) in people with Type 2 diabetes. Methods : This was a cross-sectional study whereby 61 participants (mean age 61 [41-75 years], mean duration of diabetes 14 [1-40 years], 70% male) with Type 2 diabetes and DPN underwent optical coherence tomography (OCT) scans. Global and 4 quadrant (TSNI) RNFL thicknesses were measured at 3.45mm around the optic nerve head of one eye. Neuropathy disability score (NDS) was used to assess the severity of DPN on a 0 to 10 scale. Participants were divided into three age-matched groups representing mild (NDS=3-5), moderate (NDS=6-8) and severe (NDS=9-10) neuropathy. Two regression models were fitted for statistical analysis: 1) NDS scores as co-variate for global and quadrant RNFL thicknesses, 2) NDS groups as a factor for global RNFL thickness only. Results : Mean (SD) RNFL thickness (µm) was 103(9) for mild neuropathy (n=34), 101(10) for moderate neuropathy (n=16) and 95(13) in the group with severe neuropathy (n=11). Global RNFL thickness and NDS scores were statistically significantly related (b=-1.20, p=0.048). When neuropathy was assessed across groups, a trend of thinner mean RNFL thickness was observed with increasing severity of neuropathy; however, this result was not statistically significant (F=2.86, p=0.065). TSNI quadrant analysis showed that mean RNFL thickness reduction in the inferior quadrant was 2.55 µm per 1 unit increase in NDS score (p=0.005). However, the regression coefficients were not statistically significant for RNFL thickness in the superior (b=-1.0, p=0.271), temporal (b=-0.90, p=0.238) and nasal (b=-0.99, p=0.205) quadrants. Conclusions : RNFL thickness was reduced with increasing severity of DPN and the effect was most evident in the inferior quadrant. Measuring RNFL thickness using OCT may prove to be a useful, non-invasive technique for identifying severity of DPN and may also provide additional insight into common mechanisms for peripheral neuropathy and RNFL damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Retinal tissue integrity in relation to diabetic neuropathy is not known. The aim of this study was to investigate retinal tissue thickness in relation to diabetic peripheral neuropathy (DPN) with and without diabetic retinopathy (DR). Methods Full retinal thickness at the parafoveal and perifoveal macula and neuro-retinal thickness around the optic nerve head (ONH) and at the macula was examined using spectral domain optical coherence tomography. The eye on the hand-dominant side of 85 individuals with type 1 diabetes and 66 individuals with type 2 diabetes, with or without DR and DPN, were compared to the eyes (n=45) of age-matched non-diabetic controls. Diabetic neuropathy was defined as Neuropathy Disability Score (NDS) ≥3 on a scale of 0-10. A general linear model was used to examine the relationship between diabetic neuropathy and foveal, parafoveal and perifoveal retinal thickness and neuro-retinal thickness, in relation to DR status, age, gender, HbA1c levels and duration of diabetes. A p-value of <0.05 was considered statistically significant. Results Perifoveal retinal thickness is reduced with increasing severity of neuropathy, especially in the inferior hemisphere (p=0.004); this effect was not related to age (p=0.088). For every unit increase in NDS score, the inferior perifoveal retinal thickness reduced by 1.64 μm. Neuro-retinal thickness around the ONH decreased with increasing severity of neuropathy (p<0.014 for average and hemisphere thicknesses); for every unit increase in NDS, neuro-retinal thickness around the ONH reduced by 1.23 μm. Retinal thickness in the parafovea was increased in the absence of DR (p<0.017 for average and hemisphere thicknesses). Neuro-retinal thickness at the macula was inversely related to age alone (p<0.001). All retinal parameters, except the inferior perifovea, reduced with advancing age (p<0.007 for all). Conclusions Diabetic neuropathy is associated with changes in full retinal thickness and neuro-retinal layers. This may represent a second threat to vision integrity, in addition to the better-characterised retinopathy. This study provides new knowledge about the anatomical aspects of the retinal tissue in relation to neuropathy and retinopathy.