27 resultados para reticularis
Resumo:
Detailed information regarding the contribution of individual γ-aminobutyric acid (GABA)-containing inhibitory neurons to the overall synaptic activity of single postsynaptic cells is essential to our understanding of fundamental elements of synaptic integration and operation of neuronal circuits. For example, GABA-containing cells in the thalamic reticular nucleus (nRt) provide major inhibitory innervation of thalamic relay nuclei that is critical to thalamocortical rhythm generation. To investigate the contribution of individual nRt neurons to the strength of this internuclear inhibition, we obtained whole-cell recordings of unitary inhibitory postsynaptic currents (IPSCs) evoked in ventrobasal thalamocortical (VB) neurons by stimulation of single nRt cells in rat thalamic slices, in conjunction with intracellular biocytin labeling. Two types of monosynaptic IPSCs could be distinguished. “Weak” inhibitory connections were characterized by a significant number of postsynaptic failures in response to presynaptic nRt action potentials and relatively small IPSCs. In contrast, “strong” inhibition was characterized by the absence of postsynaptic failures and significantly larger unitary IPSCs. By using miniature IPSC amplitudes to infer quantal size, we estimated that unitary IPSCs associated with weak inhibition resulted from activation of 1–3 release sites, whereas stronger inhibition would require simultaneous activation of 5–70 release sites. The inhibitory strengths were positively correlated with the density of axonal swellings of the presynaptic nRt neurons, an indicator that characterizes different nRt axonal arborization patterns. These results demonstrate that there is a heterogeneity of inhibitory interactions between nRt and VB neurons, and that variations in gross morphological features of axonal arbors in the central nervous system can be associated with significant differences in postsynaptic response characteristics.
Resumo:
This report considers the rare situation in which primary antiphospholipid syndrome (PAPS) is linked with thrombotic thrombocytopenic purpura (TTP). It describes the case of a young lady with PAPS, characterized by recurring cerebro-vascular abnormalities and marked livedo reticularis, combined with circulating anticardiolipin and lupus anticoagulant antibodies. On follow-up, while on oral anticoagulation, she developed severe thrombocytopenia associated with hematuria, microangiophatic anaemia and neurological manifestations consistent with a diagnosis of TTP. The patient was treated with pulses of methylprednisolone and plasmapheresis with plasma exchange. The result was a favourable outcome. To our knowledge, this is the seventh report on this rare association in the English-language literature of this field. Lupus (2009) 18, 841-844.
Resumo:
Endogenous angiotensin (Ang) II and/or an Ang II-derived peptide, acting on Ang type I (AT(1)) and Ang type 2 (AT(2)) receptors, can carry out part of the nociceptive control modulated by periaqueductal gray matter (PAG). However, neither the identity of this putative Ang-peptide, nor its relationship to Ang II antinociceptive activity was clarified. Therefore, we have used tail-flick and incision allodynia models combined with an HPLC time course of Ang metabolism, to study the Ang III antinociceptive effect in the rat ventrolateral (vi) PAG using peptidase inhibitors and receptor antagonists. Ang III injection into the vIPAG increased tail-flick latency, which was fully blocked by Losartan and CGP 42,112A, but not by divalinal-Ang IV, indicating that. Ang III effect was mediated by AT(1) and AT(2) receptors, but not by the AT(4) receptor. Ang III injected into the vIPAG reduced incision allodynia. Incubation of Ang II with punches of vIPAG homogenate formed Ang III, Ang (1-7) and Ang IV. Amastatin (AM) inhibited the formation of Ang III from Ang II by homogenate, and blocked the antinociceptive activity of Ang II injection into vIPAG, suggesting that aminopeptidase A (APA) formed Ang III from Ang II. Ang III can also be formed from Ang I by a vIPAG alternative pathway. Therefore, the present work shows, for the first time, that: (i) Ang III, acting on AT(1) and AT(2) receptors, can elicit vIPAG-mediated antinociception, (ii) the conversion of Ang II to Ang III in the vIPAG is required to elicit antinociception, and (iii) the antinociceptive activity of endogenous Ang II in vIPAG can be ascribed preponderantly to Ang III. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites.
Resumo:
T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.
Resumo:
Recently, we proposed the hypothesis according to wich the central hypotensive effect of clonidine and related substances could be related to an action upon specific receptors, requiring the imidazoline or imidazoline-like structures, rather than alpha2-adrenoceptors. Since then, direct evidences have been accumulated to confirm the existence of a population of imidazoline specific binding sites in the brainstem of animals and man, more precisely in the Nucleus Reticularis Lateralis (NRL) region of the ventrolateral medulla (VLM), site of the antihypertensive action of clonidine. The purification of the putative endogenous ligand of the imidazoline receptors - named endazoline - is currently being attempted from human brain extracts. This new concept might at last lead to the expected dissociation of the pharmacological mechanisms involved, on the one hand, in the therapeutic antihypertensive effect, and on the other, in their major side-effect, which is sedation. In fact, it has been recently confirmed that hypotension is mediated by the activation of imidazoline preferring receptors (IPR) within the NRL region, while sedation is attributed to the inhibition of alpha2-adrenergic mechanisms in the locus coeruleus, which is involved in the control of the sleep-waking cycle. The IPRmay constitute on interesting target for new drugs in the treatment of arterial hypertension. Finally, dysfunctions of this modulatory system which could be involved in the pathophysiologyof some forms of the hypertensive disease are under investigation.
Resumo:
Low-threshold (T-type) Ca(2+) channels encoded by the Ca(V)3 genes endow neurons with oscillatory properties that underlie slow waves characteristic of the non-rapid eye movement (NREM) sleep EEG. Three Ca(V)3 channel subtypes are expressed in the thalamocortical (TC) system, but their respective roles for the sleep EEG are unclear. Ca(V)3.3 protein is expressed abundantly in the nucleus reticularis thalami (nRt), an essential oscillatory burst generator. We report the characterization of a transgenic Ca(V)3.3(-/-) mouse line and demonstrate that Ca(V)3.3 channels are indispensable for nRt function and for sleep spindles, a hallmark of natural sleep. The absence of Ca(V)3.3 channels prevented oscillatory bursting in the low-frequency (4-10 Hz) range in nRt cells but spared tonic discharge. In contrast, adjacent TC neurons expressing Ca(V)3.1 channels retained low-threshold bursts. Nevertheless, the generation of synchronized thalamic network oscillations underlying sleep-spindle waves was weakened markedly because of the reduced inhibition of TC neurons via nRt cells. T currents in Ca(V)3.3(-/-) mice were <30% compared with those in WT mice, and the remaining current, carried by Ca(V)3.2 channels, generated dendritic [Ca(2+)](i) signals insufficient to provoke oscillatory bursting that arises from interplay with Ca(2+)-dependent small conductance-type 2 K(+) channels. Finally, naturally sleeping Ca(V)3.3(-/-) mice showed a selective reduction in the power density of the σ frequency band (10-12 Hz) at transitions from NREM to REM sleep, with other EEG waves remaining unaltered. Together, these data identify a central role for Ca(V)3.3 channels in the rhythmogenic properties of the sleep-spindle generator and provide a molecular target to elucidate the roles of sleep spindles for brain function and development.
Resumo:
The present study describes the postnatal expression of calbindin, calretinin and parvalbumin and glutamic acid decarboxylase (GAD) and microtubule-associated protein 2 (MAP2) in organotypic monocultures of rat dorsal thalamus compared to the thalamus in vivo. Cultures were maintained for up to 7 weeks. Cortex-conditioned medium improved the survival of thalamic cultures. MAP2-immunoreactive material was present in somata and dendrites of small and large-sized neurons throughout the cultures. Parvalbumin immunoreactivity was present in larger multipolar or bitufted neurons along the edge of a culture. These neurons also displayed strong parvalbumin mRNA and GAD mRNA expression, and GABA immunoreactivity. They likely corresponded to cells of the nucleus reticularis thalami. Parvalbumin mRNA, but neither parvalbumin protein nor GAD mRNA, was expressed in neurons with large somata within the explant. They likely represented relay cells. GAD mRNA, but not parvalbumin mRNA, was expressed in small neurons within the explants. Small neurons also displayed calbindin- and calretinin-immunoreactivity. The small neurons likely represented local circuit neurons. The time course of expression of the calcium-binding proteins revealed that all were present at birth with the predicted molecular weights. A low, but constant parvalbumin expression was observed in vitro without the developmental increase seen in vivo, which most likely represented parvalbumin from afferent sources. In contrast, the explantation transiently downregulated the calretinin and calbindin expression, but the neurons recovered the expression after 14 and 21 days, respectively. In conclusion, thalamic monocultures older than three weeks represent a stable neuronal network containing well differentiated neurons of the nucleus reticularis thalami, relay cells and local circuit neurons.
Resumo:
OBJETIVO: Estudar a prevalência de anticorpos anticardiolipinas em pacientes com úlceras venosas, diabéticas e arteriais e verificar se a contagem de plaquetas, antecedentes obstétricos e de trombose venosa profunda e achados de livedo reticularis ao exame físico servem como marcadores para os casos positivos. MÉTODOS: Estudaram-se 151 pacientes com úlcera de perna (81 com úlceras venosas, 50 com úlceras diabéticas e 20 com úlceras arteriais) e 150 controles. Pesquisou-se, nos dois grupos, a presença de anticorpos anticardiolipina IgG e IgM e contagem de plaquetas. No grupo úlcera foram coletados dados de antecedentes de trombose venosa profunda e de abortamentos e os pacientes foram examinados para presença de livedo reticularis. Os dados obtidos foram agrupados em tabelas de frequência e contingência utilizando-se dos testes de Fisher e qui-quadrado para variáveis nominais e de Mann-Whitney e Kruskall-Wallis para as numéricas. Adotou-se significância de 5%. RESULTADOS: Encontrou-se prevalência de anticorpos anticardiolipina de 7.2% (n=12) no grupo com úlceras e de 1.3% (n=2) no controle (p=0.01). As úlceras de perna anticardiolipinas positivas não diferiram daquelas sem anticardiolipinas quanto ao gênero do paciente (p=0.98) e história de trombose prévia (p=0.69), abortamentos anteriores (p=0.67) e contagens de plaquetas (p=0.67). Só dois pacientes tinham livedo reticularis não permitindo inferências estatísticas a respeito deste dado. CONCLUSÃO: Existe aumento de prevalência de anticorpos anticardiolipinas nos portadores de úlceras de perna em relação à população geral. As características clínicas das úlceras anticardiolipinas positivas e a contagem de plaquetas não auxiliam na identificação desses pacientes.
Resumo:
The neuroendocrine system regulates several organic functions such as reproduction, metabolism and adaptation to the environment. This system shows seasonal changes linked to the environment. The experimental model used in the present study was Lagostomus maximus maximus (viscacha). The reproduction of males of this species is photoperiod dependent. Twenty-four adult male viscachas were captured in their habitat at different times during one year. The adrenal glands were processed for light microscopy. Serial cuts were stained with hematoxylin-eosin for the morphometric study, and 100 nuclei of each zone of the adrenal cortex were counted per animal. Data were analyzed statistically by ANOVA and the Tukey test. The cells of the glomerulosa zone are arranged in a tube-shaped structure. The fasciculata zone has large cells with central nuclei and clearly visible nucleoli and with a vacuolar cytoplasm. In the reticularis zone there are two of types of cells, one with a nucleus of fine chromatin and a clearly visible nucleolus and the other with nuclear pycnosis. Morphometric analysis showed maximum nuclear volumes during the February-March period with values of 133 ± 7.3 µm3 for the glomerulosa, 286.4 ± 14.72 µm3 for the fasciculata, and 126.3 ± 9.49 µm3 for the reticularis. Minimum nuclear volumes were observed in August with values of 88.24 ± 9.9 µm3 for the glomerulosa, 163.7 ± 7.78 µm3 for the fasciculata and 64.58 ± 4.53 µm3 for the reticularis. The short winter photoperiod to which viscacha is subjected could inhibit the adrenal cortex through a melatonin increase which reduces the nuclear volume as well as the cellular activity.
Resumo:
The human adrenal cortex, involved in adaptive responses to stress, body homeostasis and secondary sexual characters, emerges from a tightly regulated development of a zone-specific secretion pattern during fetal life. Its development during fetal life is critical for the well being of pregnancy, the initiation of delivery, and even for an adequate adaptation to extra-uterine life. As early as from the sixth week of pregnancy, the fetal adrenal gland is characterized by a highly proliferative zone at the periphery, a concentric migration accompanied by cell differentiation (cortisol secretion) and apoptosis in the central androgen-secreting fetal zone. After birth, a strong reorganization occurs in the adrenal gland so that it better fulfills the newborn's needs, with aldosterone production in the external zona glomerulosa, cortisol secretion in the zona fasciculata and androgens in the central zona reticularis. In addition to the major hormonal stimuli provided by angiotensin II and adrenocorticotropin, we have tested for some years the hypotheses that such plasticity may be under the control of the extracellular matrix. A growing number of data have been harvested during the last years, in particular about extracellular matrix expression and its putative role in the development of the human adrenal cortex. Laminin, collagen and fibronectin have been shown to play important roles not only in the plasticity of the adrenal cortex, but also in cell responsiveness to hormones, thus clarifying some of the unexplained observations that used to feed controversies.
Resumo:
During gonad and adrenal development, the POD-1/capsulin/TCF21transcription factor negatively regulates SF-1/NR5A1expression, with higher SF-1 levels being associated with increased adrenal cell proliferation and tumorigenesis. In adrenocortical tumor cells, POD-1 binds to the SF-1 E-box promoter region, decreasing SF-1 expression. However, the modulation of SF-1 expression by POD-1 has not previously been described in normal adrenal cells. Here, we analyzed the basal expression of Pod-1 and Sf-1 in primary cultures of glomerulosa (G) and fasciculata/reticularis (F/R) cells isolated from male Sprague-Dawley rats, and investigated whether POD-1 overexpression modulates the expression of endogenous Sf-1 and its target genes in these cells. POD-1 overexpression, following the transfection of pCMVMycPod-1, significantly decreased the endogenous levels of Sf-1 mRNA and protein in F/R cells, but not in G cells, and also decreased the expression of the SF-1 target StAR in F/R cells. In G cells overexpressing POD-1, no modulation of the expression of SF-1 targets, StAR and CYP11B2, was observed. Our data showing that G and F/R cells respond differently to ectopic POD-1 expression emphasize the functional differences between the outer and inner zones of the adrenal cortex, and support the hypothesis that SF-1 is regulated by POD-1/Tcf21 in normal adrenocortical cells lacking the alterations in cellular physiology found in tumor cells.
Resumo:
The identity of the pro-opiomelanocortin (POMC)-derived mitogen in the adrenal cortex has been historically controversial. We have used well-established in vivo models, viz., hypophysectomized (Hyp) or dexamethasone (Dex)-treated rats, to study the effect of the synthetic modified peptide N-terminal POMC (N-POMC(1-28)) on DNA synthesis in the adrenal cortex, as assessed by BrdU incorporation and compared with adrenocorticotropic hormone (ACTH). We evaluated the importance of disulfide bridges on proliferation by employing N-POMC(1-28) without disulfide bridges and with methionines replacing cysteines. Acute administration of synthetic modified N-POMC(1-28) distinctly increased DNA synthesis in the zona glomerulosa and zona fasciculata, but not in the zona reticularis in Hyp rats, whereas in Dex-treated rats, this peptide was effective in all adrenal zones. ACTH administration led to an increase of BrdU-positive cells in all adrenal zones irrespective of the depletion of Hyp or Dex-POMC peptides. The use of the ACTH antagonist, ACTH(7-38), confirmed the direct participation of ACTH in proliferation. Two different approaches to measure apoptosis revealed that both peptides similarly exerted a protective effect on all adrenocortical zones, blocking the apoptotic cell death induced by hypophysectomy. Thus, ACTH(1-39) and N-POMC(1-28) have similar actions suggesting that the disulfide bridges are important but not essential. Both peptides seem to be important factors determining adrenocortical cell survival throughout the adrenal cortex, reinforcing the idea that each zone can be renewed from within itself.
Resumo:
There is evidence that pro-opiomelanocortin (POMC)-derived peptides other than adrenocorticotropic hormone (ACTH) have a role in adrenal cell proliferation. We compared the activity of synthetic rat N-terminal POMC fragment 1-28 with disulfide bridges (N-POMC(w)) and without disulfide bridges (N-POMC(w/o)), with the activity of fibroblast growth factor (FGF2), a widely studied adrenal growth factor, and ACTH, in well-characterized pure cultures of both isolated adrenal Glomerulosa (G) and Fasciculata/Reticularis (F/R) cells. Three days of FGF2-treatment had a proliferative effect similar to serum, and synthetic peptide N-POMC(w) induced proliferation more efficiently than N-POMC(w/o). Moreover, both induced proliferation via the ERK1/2 pathway. In contrast, sustained ACTH treatment decreased proliferation and viability through apoptosis induction, but not necrosis, and independently of PKA and PKC pathways. Further elucidation of 1-28 POMC signal transduction is of interest, and primary cultures of adrenal cells were found to be useful for examining the trophic activity of this peptide.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)