938 resultados para resurrection plants


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis , by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resurrection plants can withstand extreme dehydration to an air-dry state and then recover upon receiving water. Tripogon loliiformis (F.Muell.) C.E.Hubb. is a largely uncharacterised native Australian desiccation-tolerant grass that resurrects from the desiccated state within 72 h. Using a combination of structural and physiological techniques the structural and physiological features that enable T. loliiformis to tolerate desiccation were investigated. These features include: - (i) a myriad of structural changes such as leaf folding, cell wall folding and vacuole fragmentation that mitigate desiccation stress; - (ii) potential role of sclerenchymatous tissue within leaf folding and radiation protection; - (iii) retention of ~70% chlorophyll in the desiccated state; - (iv) early response of photosynthesis to dehydration by 50% reduction and ceasing completely at 80 and 70% relative water content, respectively; - (v) a sharp increase in electrolyte leakage during dehydration, and; - (vi) confirmation of membrane integrity throughout desiccation and rehydration. Taken together, these results demonstrate that T. loliiformis implements a range of structural and physiological mechanisms that minimise mechanical, oxidative and irradiation stress. These results provide powerful insights into tolerance mechanisms for potential utilisation in the enhancement of stress-tolerance in crop plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

干旱对植物的影响和植物对干旱的反应是十分复杂的,涉及到植物的各种生理活动,由胁迫强度及时间、植物本身的遗传特性、发育阶段和生理状况以及其他环境因子共同决定。现代分子生物学和生物技术的发展深化了对植物逆境反应的研究,对植物抗旱分子反应的研究成为这个领域的热点,也引发了抗逆基因资源的争夺战。 以拟南芥等植物为实验材料的研究对深入了解植物对干旱胁迫感知和反应机制提供了重要信息, 但对植物抗旱机制的了解仍然十分匮乏。其中, 限制人们对抗旱机制深入了解的一个重要因素就是植物抗旱机制的复杂性和多样性,这种抗旱机制的复杂性决定了不是所有的机制都可通过拟南芥等植物来加以揭示。因此利用特殊生境植物来研究相关基因的表达对揭示植物对环境适应机制有着极为重要的价值。 我们实验室以复苏被子植物旋蒴苣苔(Boea hygrometrica (Bunge) R Br.,牛耳草)为实验材料,开展了多方面的工作,以期从复苏植物的角度加深人们对抗旱机制的了解。目前我们实验室已成功地建立了利用cDNA微阵列技术研究牛耳草基因表达谱的体系,并比较了4562个cDNA克隆在干旱前后的表达差异, 发现434个cDNA在干旱条件下表达水平增加一倍以上。 本工作是在上述工作的基础上,对这些表达差异的cDNA克隆并测序,利用Northern blot进一步验证这些基因。序列分析表明,这434个cDNA片段实际上代表着42个基因。根据序列同源性分析表明其中36个克隆与已知功能的基因具有同源性,它们分别是细胞壁相关基因、LEA基因和糖类、抗氧化酶类的编码基因等。另外,4个克隆未能找到同源序列,这可能意味着它们是一些新基因;2个克隆虽找到同源基因但功能未知。36个克隆中有3个编码的是细胞壁相关基因,它们在干旱早期就被诱导,而编码LEA蛋白的基因在干旱中期或后期大量诱导,这说明牛耳草耐旱反应的启动是程序化的,随干旱时间的延长和程度的加强,一步步地启动相应的基因来发挥作用,多方面地对植物细胞进行保护和修复。 本实验室的前期工作表明牛耳草脱水复水过程中细胞超微结构分发生了明显变化,其中细胞壁脱水时发生折叠复水时恢复原状。鉴于细胞壁如此显著的变化及其重要作用,我们以两个细胞壁相关的基因BhGRP1和BhGLP1为对象,对其表达的时间空间特点和对不同胁迫信号的应答、编码产物的理化性质、过量表达或抑制表达的转基因植物的表现型及转基因植物对不同逆境胁迫的抗/感性状等方面的进行研究,综合分析其在耐旱反应中可能参与的代谢途径或信号途径,以期为揭示牛耳草耐旱复苏机制提供有力的佐证。 我们利用Northern blot和半定量RT-PCR对两基因进行了表达模式分析,发现BhGRP1在干旱早期被诱导,干旱后期其转录本水平下降。而BhGLP1在早期诱导后一直保持高的表达。两者在不同胁迫、激素等处理下都有不同的响应。经PSORT分析两基因编码的蛋白都具有N-端信号肽,意味着两蛋白定位于胞外基质。构建BhGRP1-GFP和BhGLP1-GFP融合蛋白进行亚细胞定位分析,质壁分离后BhGRP1-GFP的信号仅保留在细胞壁,而BhGLP1-GFP则在胞壁胞膜上都存在。过量表达BhGRP1后发现它能赋予植物更强的耐旱复苏能力及机械强度,而抑制GLP表达的植株的抗旱性明显弱于野生型,表明BhGRP1和BhGLP1与牛耳草的耐旱复苏有密切的关系。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Aims Dormancy has been extensively studied in plants which experience severe winter conditions but much less so in perennial herbaceous plants that must survive summer drought. This paper reviews the current knowledge on summer dormancy in both native and cultivated perennial temperate grasses originating from the Mediterranean Basin, and presents a unified terminology to describe this trait. Scope Under severe drought, it is difficult to separate the responses by which plants avoid and tolerate dehydration from those associated with the expression of summer dormancy. Consequently, this type of endogenous (endo-) dormancy can be tested only in plants that are not subjected to moisture deficit. Summer dormancy can be defined by four criteria, one of which is considered optional: (1) reduction or cessation of leaf production and expansion; (2) senescence of mature foliage; (3) dehydration of surviving organs; and (4, optional) formation of resting organs. The proposed terminology recognizes two levels of summer dormancy: (a) complete dormancy, when cessation of growth is associated with full senescence of foliage and induced dehydration of leaf bases; and (b) incomplete dormancy, when leaf growth is partially inhibited and is associated with moderate levels of foliage senescence. Summer dormancy is expressed under increasing photoperiod and temperature. It is under hormonal control and usually associated with flowering and a reduction in metabolic activity in meristematic tissues. Dehydration tolerance and dormancy are independent phenomena and differ from the adaptations of resurrection plants. Conclusions Summer dormancy has been correlated with superior survival after severe and repeated summer drought in a large range of perennial grasses. In the face of increasing aridity, this trait could be used in the development of cultivars that are able to meet agronomic and environmental goals. It is therefore important to have a better understanding of the genetic and environmental control of summer dormancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants have been identified as promising expression systems for the commercial production of recombinant proteins. Plant-based protein production or “biofarming” offers a number of advantages over traditional expression systems in terms of scale of production, the capacity for post-translation processing, providing a product free of contaminants and cost effectiveness. A number of pharmaceutically important and commercially valuable proteins, such as antibodies, biopharmaceuticals and industrial enzymes are currently being produced in plant expression systems. However, several challenges still remain to improve recombinant protein yield with no ill effect on the host plant. The ability for transgenic plants to produce foreign proteins at commercially viable levels can be directly related to the level and cell specificity of the selected promoter driving the transgene. The accumulation of recombinant proteins may be controlled by a tissue-specific, developmentally-regulated or chemically-inducible promoter such that expression of recombinant proteins can be spatially- or temporally- controlled. The strict control of gene expression is particularly useful for proteins that are considered toxic and whose expression is likely to have a detrimental effect on plant growth. To date, the most commonly used promoter in plant biotechnology is the cauliflower mosaic virus (CaMV) 35S promoter which is used to drive strong, constitutive transgene expression in most organs of transgenic plants. Of particular interest to researchers in the Centre for Tropical Crops and Biocommodities at QUT are tissue-specific promoters for the accumulation of foreign proteins in the roots, seeds and fruit of various plant species, including tobacco, banana and sugarcane. Therefore this Masters project aimed to isolate and characterise root- and seed-specific promoters for the control of genes encoding recombinant proteins in plant-based expression systems. Additionally, the effects of matching cognate terminators with their respective gene promoters were assessed. The Arabidopsis root promoters ARSK1 and EIR1 were selected from the literature based on their reported limited root expression profiles. Both promoters were analysed using the PlantCARE database to identify putative motifs or cis-acting elements that may be associated with this activity. A number of motifs were identified in the ARSK1 promoter region including, WUN (wound-inducible), MBS (MYB binding site), Skn-1, and a RY core element (seed-specific) and in the EIR1 promoter region including, Skn-1 (seed-specific), Box-W1 (fungal elicitor), Aux-RR core (auxin response) and ABRE (ABA response). However, no previously reported root-specific cis-acting elements were observed in either promoter region. To confirm root specificity, both promoters, and truncated versions, were fused to the GUS reporter gene and the expression cassette introduced into Arabidopsis via Agrobacterium-mediated transformation. Despite the reported tissue-specific nature of these promoters, both upstream regulatory regions directed constitutive GUS expression in all transgenic plants. Further, similar levels of GUS expression from the ARSK1 promoter were directed by the control CaMV 35S promoter. The truncated version of the EIR1 promoter (1.2 Kb) showed some differences in the level of GUS expression compared to the 2.2 Kb promoter. Therefore, this suggests an enhancer element is contained in the 2.2 Kb upstream region that increases transgene expression. The Arabidopsis seed-specific genes ATS1 and ATS3 were selected from the literature based on their seed-specific expression profiles and gene expression confirmed in this study as seed-specific by RT-PCR analysis. The selected promoter regions were analysed using the PlantCARE database in order to identify any putative cis elements. The seed-specific motifs GCN4 and Skn-1 were identified in both promoter regions that are associated with elevated expression levels in the endosperm. Additionaly, the seed-specific RY element and the ABRE were located in the ATS1 promoter. Both promoters were fused to the GUS reporter gene and used to transform Arabidopsis plants. GUS expression from the putative promoters was consitutive in all transgenic Arabidopsis tissue tested. Importantly, the positive control FAE1 seed-specific promoter also directed constitutive GUS expression throughout transgenic Arabidopsis plants. The constitutive nature seen in all of the promoters used in this study was not anticipated. While variations in promoter activity can be caused by a number of influencing factors, the variation in promoter activity observed here would imply a major contributing factor common to all plant expression cassettes tested. All promoter constructs generated in this study were based on the binary vector pCAMBIA2300. This vector contains the plant selection gene (NPTII) under the transcriptional control of the duplicated CaMV 35S promoter. This CaMV 35S promoter contains two enhancer domains that confer strong, constitutive expression of the selection gene and is located immediately upstream of the promoter-GUS fusion. During the course of this project, Yoo et al. (2005) reported that transgene expression is significantly affected when the expression cassette is located on the same T-DNA as the 35S enhancer. It was concluded, the trans-acting effects of the enhancer activate and control transgene expression causing irregular expression patterns. This phenomenon seems the most plausible reason for the constitutive expression profiles observed with the root- and seed-specific promoters assessed in this study. The expression from some promoters can be influenced by their cognate terminator sequences. Therefore, the Arabidopsis ARSK1, EIR1, ATS1 and ATS3 terminator sequences were isolated and incorporated into expression cassettes containing the GUS reporter gene under the control of their cognate promoters. Again, unrestricted GUS activity was displayed throughout transgenic plants transformed with these reporter gene fusions. As previously discussed constitutive GUS expression was most likely due to the trans-acting effect of the upstream CaMV 35S promoter in the selection cassette located on the same T-DNA. The results obtained in this study make it impossible to assess the influence matching terminators with their cognate promoters have on transgene expression profiles. The obvious future direction of research continuing from this study would be to transform pBIN-based promoter-GUS fusions (ie. constructs containing no CaMV 35S promoter driving the plant selection gene) into Arabidopsis in order to determine the true tissue specificity of these promoters and evaluate the effects of their cognate 3’ terminator sequences. Further, promoter truncations based around the cis-elements identified here may assist in determining whether these motifs are in fact involved in the overall activity of the promoter.