985 resultados para respiratory activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure of cold-acclimatized rats to heat (37 degrees C) for a short period decreased brown adipose tissue (BAT) mitochondrial substrate-dependent oxygen uptake and H2O2 generation. Both the concentration and substrate-dependent rate of cytochrome b reduction decreased as early as 3 h of heat exposure. These results identify cytochrome b as the locus of regulation of electron transport in BAT mitochondria under conditions of heat stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of extract of Aloe vera in the transport water of matrinxã (Brycon amazonicus) fish on stress response and leukocyte respiratory activity. Fish was transported for 4 h in water containing Aloe at levels 0; 0.02; 0.2 and 2 mg/L, and sampled before transport 2, 4, 24 and 96 h after for determination of plasma glucose and respiratory activity of leukocytes. An additional in vitro assay was conducted with another fish species, pacu (Piaractus mesopotamicus), to test the respiratory burst of leukocytes exposed to Aloe extract (0.0, phosphate-buffered saline (PBS) only) at 0.1, 0.2, 0.5 and 1 mg/L). Plasma glucose increased after 2 and 4 h of transport and returned to control levels within 24 h, but the addition of Aloe in the transport water did not affect the level of blood glucose. However, at 2 h of transport, Aloe enhanced the respiratory activity of leukocytes in a dose-dependent way. The highest value of respiratory burst activity of leukocytes was observed in the fish transported in water containing Aloe at 2 mg/L. The enhancing effect of the plant extract on the production of oxygen radicals was confirmed in vitro in leukocytes of pacu incubated in Aloe at concentrations 0.1 and 0.2 mg/L. The results suggest that Aloe vera is a modulator of the immune system in fish improving the innate immune response tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased replicative longevity in Saccharomyces cerevisiae because of calorie restriction has been linked to enhanced mitochondrial respiratory activity. Here we have further investigated how mitochondrial respiration affects yeast life span. We found that calorie restriction by growth in low glucose increased respiration but decreased mitochondrial reactive oxygen species production relative to oxygen consumption. Calorie restriction also enhanced chronological life span. The beneficial effects of calorie restriction on mitochondrial respiration, reactive oxygen species release, and replicative and chronological life span could be mimicked by uncoupling agents such as dinitrophenol. Conversely, chronological life span decreased in cells treated with antimycin (which strongly increases mitochondrial reactive oxygen species generation) or in yeast mutants null for mitochondrial superoxide dismutase (which removes superoxide radicals) and for RTG2 (which participates in retrograde feedback signaling between mitochondria and the nucleus). These results suggest that yeast aging is linked to changes in mitochondrial metabolism and oxidative stress and that mild mitochondrial uncoupling can increase both chronological and replicative life span.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several tests to assess the vigor of seed lots are used by producing companies for internal quality control. The respiratory activity test determined in the Pettenkofer apparatus has potential to be used for this purpose. Therefore, this study aimed to analyze and compare the use of respiratory activity measured in the Pettenkofer apparatus with standard tests to assess the vigor, and classify seed lots of bean-kid in high, medium and low vigor. The respiratory activity of three lots of bean-kid seeds were related to the following tests: germination, first germination count, electrical conductivity, length of shoots and roots, and dry weight of seedlings shoots and roots. The results of germination tests, germination first count, seedling shoot and root length, seedling shoot and root dry mass, electrical conductivity and determination of respiratory activity the seeds, allowed the classification of seeds lots of bean-kid in levels of different vigor. It is concluded that the respiratory activity measured in the Pettenkofer apparatus is efficient for the classification of seed lots of bean-kid according to vigor, being a fast, effective and low cost procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Due to the increasing atmospheric CO2, several on-going research programs, including the German-led KOSMOS GC14 experiment, are evaluating the impact of acidification on marine organisms, intent to predict their future. In the KOSMOS GC14 mesocosm experiment we assessed the effect of different CO2 concentrations on metabolism in microplankton (0.7-50µm size) and in biogenic particles harvested by sediment traps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]The increase in the anthropogenic CO2 released to the atmosphere, induces an increase in the dissolved CO2 in the ocean, causing elevated pCO2 values and a pH decrease. Due to the increasing atmospheric CO2, several on-going research programs are evaluating the impact of acidification on marine organisms, intent to predict their future. In this mesocosm experiment (KOSMOS 14GC), we assessed the effect of different CO2 concentrations on metabolism in microplankton (0.7-50μm size) and in biogenic particles harvested by sediment traps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of extract of Aloe vera in the transport water of matrinxã (Brycon amazonicus) fish on stress response and leukocyte respiratory activity. Fish was transported for 4 h in water containing Aloe at levels 0; 0.02; 0.2 and 2 mg/L, and sampled before transport 2, 4, 24 and 96 h after for determination of plasma glucose and respiratory activity of leukocytes. An additional in vitro assay was conducted with another fish species, pacu (Piaractus mesopotamicus), to test the respiratory burst of leukocytes exposed to Aloe extract (0.0, phosphate-buffered saline (PBS) only) at 0.1, 0.2, 0.5 and 1 mg/L). Plasma glucose increased after 2 and 4 h of transport and returned to control levels within 24 h, but the addition of Aloe in the transport water did not affect the level of blood glucose. However, at 2 h of transport, Aloe enhanced the respiratory activity of leukocytes in a dose-dependent way. The highest value of respiratory burst activity of leukocytes was observed in the fish transported in water containing Aloe at 2 mg/L. The enhancing effect of the plant extract on the production of oxygen radicals was confirmed in vitro in leukocytes of pacu incubated in Aloe at concentrations 0.1 and 0.2 mg/L. The results suggest that Aloe vera is a modulator of the immune system in fish improving the innate immune response tested.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fipronil is a neurotoxic insecticide that inhibits the gamma-aminobutyric acid receptor and can affect gustative perception, olfactory learning, and motor activity of the honeybee Apis mellifera. This study determined the lethal dose (LD50) and the lethal concentration (LC50) for Africanized honeybee and evaluated the toxicity of a sublethal dose of fipronil on neuron metabolic activity by way of histochemical analysis using cytochrome oxidase detection in brains from worker bees of different ages. In addition, the present study investigated the recovery mechanism by discontinuing the oral exposure to fipronil. The results showed that mushroom bodies of aged Africanized honeybees are affected by fipronil, which causes changes in metabolism by increasing the respiratory activity of mitochondria. In antennal lobes, the sublethal dose of fipronil did not cause an increase in metabolic activity. The recovery experiments showed that discontinued exposure to a diet contaminated with fipronil did not lead to recovery of neural activity. Our results show that even at very low concentrations, fipronil is harmful to honeybees and can induce several types of injuries to honeybee physiology. © 2012 Springer Science+Business Media New York.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic neurons, culminating with the emergence of entrained cardiovascular and respiratory reflex responses. Studies have proposed that the ventrolateral region of the medulla oblongata is a major site of synaptic interaction between respiratory and sympathetic neurons. However, other brainstem regions also play a relevant role in the patterning of respiratory and sympathetic motor outputs. Recent findings suggest that the neurons of the nucleus of the solitary tract (NTS), in the dorsal medulla, are essential for the processing and coordination of respiratory and sympathetic responses to hypoxia. The NTS is the first synaptic station of the cardiorespiratory afferent inputs, including peripheral chemoreceptors, baroreceptors and pulmonary stretch receptors. The synaptic profile of the NTS neurons receiving the excitatory drive from afferent inputs is complex and involves distinct neurotransmitters, including glutamate, ATP and acetylcholine. In the present review we discuss the role of the NTS circuitry in coordinating sympathetic and respiratory reflex responses. We also analyze the neuroplasticity of NTS neurons and their contribution for the development of cardiorespiratory dysfunctions, as observed in neurogenic hypertension, obstructive sleep apnea and metabolic disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cat's claw (Uncaria tomentosa) is an Amazon herb using in native cultures in Peru. In mammals, it has been described several effects of this herb. However, this is the first report of its use on the diet of fish. The aim of this study was to determinate the effect of this plant on the growth and immune activity in Oreochromis niloticus. Nile tilapia (81.3 ± 4.5 g) were distributed into 5 groups and supplemented with 0 (non-supplement fish), 75, 150, 300, and 450 mg of U. tomentosa.kg(-1) of diet for a period of 28 days. Fish were inoculated in the swim bladder with inactivated Streptococcus agalactiae and samples were taken at 6, 24, and 48 h post inoculation (HPI). Dose dependent increases were noted in some of the evaluated times of thrombocytes and white blood cells counts (WBC) in blood and exudate, burst respiratory activity, lysozyme activity, melanomacrophage centers count (MMCs), villi length, IgM by immunohistochemistry in splenic tissue, and unexpectedly on growth parameters. However, dietary supplementation of this herb did not affect red blood cells count (RBC), hemoglobin, and there were no observed histological lesions in gills, intestine, spleen, and liver. The current results demonstrate for the first time that U. tomentosa can stimulate fish immunity and improve growth performance in Nile tilapia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Macro- and meiobenthic abundance and biomass as well as metabolic activity (respiration, ETS activity) have been studied along a transect ranging from 130 to 3000 m water depth off northern Morocco (35° N) during "Meteor" cruise No. 53 (1980). The distribution of chloroplastic pigment concentration (chlorophyll a, pheophytins) in the sediment has been investigated as a measure of sedimented primary organic matter. High chloroplastic pigment concentrations were found on the shelf and around the shelf break, but values declined rapidly between 200 and 600 m depth. Below 1200 m pigment concentrations remained at a relatively uniform low level. Macrobenthic abundance and biomass (wet weight) decreased with increasing water depth and with distance from the shore. Significant changes occurred between the shelf and upper slope and below 2000 m depth. Meiobenthic abundance and biomass (ash free dry weight) followed the same general pattern, but changes were found below 400 and 800 m depth. In the depth range of 1200 to 3000 m values differ only slightly. Meiofauna abundance and biomass show a good correlation with the sedimentary chloroplastic pigment concentrations. Respiratory activity of sediment cores, measured by a shipboard technique at ambient temperatures, decreased with water depth and shows a good correlation with the pigment concentrations. ETS activity was highest on the shelf and decreased with water depth, with significant changes between 200 and 400 m, and below 1200 m depth, respectively. Activity was generally highest in the top 5 cm of the sediment and was measurable, at all stations, down to 15 cm sediment depth. Shelf and upper slope stations exhibited a vertical distribution pattern of ETS activity in the sediment column, different from that of deeper stations. The importance of biological activity measurements as an estimate of productivity is discussed. To prove the thesis that differences in benthic abundance, biomass and activity reflect differences in pelagic surface primary production, in the case of the NW-African coast caused by different upwelling intensities, the values from 35° N were compared with data from 21° N (permanent upwelling activity) and 17° N (ca. 9 months upwelling per year). On the shelf and upper slope (< 500 m) hydrographical conditions (currents, internal waves) influence the deposition of organic matter and cause a biomass minimum between 200 and 400 m depth in some regions. But, in general, macrobenthic abundance and biomass increases with enhanced upwelling activity and reaches a maximum in the area off Cape Blanc (21° N). On the shelf and in the shelf break region meiofauna densities are higher at 35° N in comparison to 21° N; but in contrast to the decreasing meiofauna abundance with increasing water depth at 35° N, an abundance maximum between 400 and 1200 m depth is formed in the Cape Blanc region; this maximum coincides with the maximum of sedimentary chloroplastic pigment equivalents. The comparison of ETS activities between 35° N and 21° N shows on the shelf activity at 21° N is up to 14 times higher and on the slope 4-9 times higher, which demonstrates that benthic activity responds to the surface productivity regime.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A commentary on ‘Hypoglossal neuropathology and respiratory activity in Pompe mice’, by Lee, K.-Z., Qiu, K., Sandhu, M. S., Elmullah, M. K., Falk, D. J., Lane, M. A., Reier, P. J., Byrne, B. J., and Fuller, D. D. (2011). Front. Physiol. 2:31. doi: 10.3389/fphys.2011.00031.