875 resultados para resistance to cloning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusarium wilt of tomato, caused by the fungal pathogen, Fusarium oxysporum f. sp. lycopersici (Fol), is an economically damaging disease that results in huge losses in Australia and other countries worldwide. The I-3 gene, which confers resistance to Fol race 3, has been described in wild tomato, Lycopersicon pennellii, accessions LA716 and PI414773. We are pursuing the isolation of I-3 from LA716 by map-based cloning. We have constructed a high-resolution map of the I-3 region and have identified markers closely flanking I-3 as well as markers co-segregating with I-3. In addition, construction of a physical map based on these markers has been initiated. This review describes the context of our research and our progress towards isolating the I-3 gene. It also describes some important practical outcomes of our work, including the development and use of a PCR-based marker for marker-assisted selection for I-3, and the finding that the I-3 gene from LA716 is different to that from PI1414773, which we have now designated I-7. Tomato varieties combining I-3 and I-7 have been developed and are currently being introduced into commercial production to further safeguard tomato crops against Fusarium wilt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is one of the most economically important crop diseases, but is only treatable with fungicides, which are becoming less effective owing to the emergence of fungicide resistance. There are no commercial soybean cultivars with durable resistance to P. pachyrhizi, and although soybean resistance loci have been mapped, no resistance genes have been cloned. We report the cloning of a P. pachyrhizi resistance gene CcRpp1 (Cajanus cajan Resistance against Phakopsora pachyrhizi 1) from pigeonpea (Cajanus cajan) and show that CcRpp1 confers full resistance to P. pachyrhizi in soybean. Our findings show that legume species related to soybean such as pigeonpea, cowpea, common bean and others could provide a valuable and diverse pool of resistance traits for crop improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bananas are susceptible to a diverse range of biotic and abiotic stresses, many of which cause serious production constraints worldwide. One of the most destructive banana diseases is Fusarium wilt caused by the soil-borne fungus, Fusarium oxysporum f. sp. cubense (Foc). No effective control strategy currently exists for this disease which threatens global banana production. Although disease resistance exists in some wild bananas, attempts to introduce resistance into commercially acceptable bananas by conventional breeding have been hampered by low fertility, long generation times and association of poor agronomical traits with resistance genes. With the advent of reliable banana transformation protocols, molecular breeding is now regarded as a viable alternative strategy to generate disease-resistant banana plants. Recently, a novel strategy involving the expression of anti-apoptosis genes in plants was shown to result in resistance against several necrotrophic fungi. Further, the transgenic plants showed increased resistance to a range of abiotic stresses. In this thesis, the use of anti-apoptosis genes to generate transgenic banana plants with resistance to Fusarium wilt was investigated. Since water stress is an important abiotic constraint to banana production, the resistance of the transgenic plants to water stress was also examined. Embryogenic cell suspensions (ECS) of two commercially important banana cultivars, Grand Naine (GN) and Lady Finger (LF), were transformed using Agrobacterium with the anti-apoptosis genes, Bcl-xL, Bcl-xL G138A, Ced-9 and Bcl- 2 3’ UTR. An interesting, and potentially important, outcome was that the use of anti-apoptosis genes resulted in up to a 50-fold increase in Agrobacterium-mediated transformation efficiency of both LF and GN cells over vector controls. Regenerated plants were subjected to a complete molecular characterisation in order to detect the presence of the transgene (PCR), transcript (RT-PCR) and gene product (Western blot) and to determine the gene copy number (Southern blot). A total of 36 independently-transformed GN lines (8 x Bcl-xL, 5 x Bcl-xL G138A, 15 x Ced-9 and 8 x Bcl-2 3’ UTR) and 41 independently-transformed LF lines (8 x Bcl-xL, 7 x BclxL G138A, 13 x Ced-9 and 13 x Bcl-2 3’ UTR) were identified. The 41 transgenic LF lines were multiplied and clones from each line were acclimatised and grown under glasshouse conditions for 8 weeks to allow monitoring for phenotypic abnormalities. Plants derived from 3 x Bcl-xL, 2 x Ced-9 and 5 x Bcl-2 3’ UTR lines displayed a variety of aberrant phenotypes. However, all but one of these abnormalities were off-types commonly observed in tissue-cultured, non-transgenic banana plants and were therefore unlikely to be transgene-related. Prior to determining the resistance of the transgenic plants to Foc race 1, the apoptotic effects of the fungus on both wild-type and Bcl-2 3’ UTR-transgenic LF banana cells were investigated using rapid in vitro root assays. The results from these assays showed that apoptotic-like cell death was elicited in wild-type banana root cells as early as 6 hours post-exposure to fungal spores. In contrast, these effects were attenuated in the root cells of Bcl-2 3’ UTR-transgenic lines that were exposed to fungal spores. Thirty eight of the 41 transgenic LF lines were subsequently assessed for resistance to Foc race 1 in small-plant glasshouse bioassays. To overcome inconsistencies in rating the internal (vascular discolouration) disease symptoms, a MatLab-based computer program was developed to accurately and reliably assess the level of vascular discolouration in banana corms. Of the transgenic LF banana lines challenged with Foc race 1, 2 x Bcl-xL, 3 x Ced-9, 2 x Bcl-2 3’ UTR and 1 x Bcl-xL G138A-transgenic line were found to show significantly less external and internal symptoms than wild-type LF banana plants used as susceptible controls at 12 weeks post-inoculation. Of these lines, Bcl-2 3’ UTR-transgenic line #6 appeared most resistant, displaying very mild symptoms similar to the wild-type Cavendish banana plants that were included as resistant controls. This line remained resistant for up to 23 weeks post-inoculation. Since anti-apoptosis genes have been shown to confer resistance to various abiotic stresses in other crops, the ability of these genes to confer resistance against water stress in banana was also investigated. Clonal plants derived from each of the 38 transgenic LF banana plants were subjected to water stress for a total of 32 days. Several different lines of transgenic plants transformed with either Bcl-xL, Bcl-xL G138A, Ced-9 or Bcl-2 3’ UTR showed a delay in visual water stress symptoms compared with the wild-type control plants. These plants all began producing new growth from the pseudostem following daily rewatering for one month. In an attempt to determine whether the protective effect of anti-apoptosis genes in transgenic banana plants was linked with reactive oxygen species (ROS)-associated programmed cell death (PCD), the effect of the chloroplast-targeting, ROS-inducing herbicide, Paraquat, on wild-type and transgenic LF was investigated. When leaf discs from wild-type LF banana plants were exposed to 10 ìM Paraquat, complete decolourisation occurred after 48 hours which was confirmed to be associated with cell death and ROS production by trypan blue and 3,3-diaminobenzidine (DAB) staining, respectively. When leaf discs from the transgenic lines were exposed to Paraquat, those derived from some lines showed a delay in decolourisation, suggesting only a weak protective effect from the transgenes. Finally, the protective effect of anti-apoptosis genes against juglone, a ROS-inducing phytotoxin produced by the causal agent of black Sigatoka, Mycosphaerella fijiensis, was investigated. When leaf discs from wild-type LF banana plants were exposed to 25 ppm juglone, complete decolourisation occurred after 48 hours which was again confirmed to be associated with cell death and ROS production by trypan blue and DAB staining, respectively. Further, TdT-mediated dUTP nick-end labelling (TUNEL) assays on these discs suggested that the cell death was apoptotic. When leaf discs from the transgenic lines were exposed to juglone, discs from some lines showed a clear delay in decolourisation, suggesting a protective effect. Whether these plants are resistant to black Sigatoka is unknown and will require future glasshouse and field trials. The work presented in this thesis provides the first report of the use of anti-apoptosis genes as a strategy to confer resistance to Fusarium wilt and water stress in a nongraminaceous monocot, banana. Such a strategy may be exploited to generate resistance to necrotrophic pathogens and abiotic stresses in other economically important crop plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RTSV is one of two viruses that cause tungro disease. RTSV is independently transmitted, whereas the other virus, rice tungro bacilliform virus (RTBV), is dependent on RTSV for its transmission by the green leafhopper (GLH), Nephotettix virescens. The occurrence and spread of tungro disease therefore depend on the presence of RTSV in the field. Resistance to RTSV infection would slow down the spread of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to rice virus diseases is an important requirement in many Southeast Asian rice breeding programs. Inheritance of resistance to rice tungro spherical virus (RTSV) in TW5, a near-isogenic line derived from Indonesian rice cultivar Utri Merah, was compared to that in TKM6, an Indian rice cultivar. Both TKM6 and Utri Merah are cultivars resistant to RTSV infections. Crosses were made between TKM6 and TN1, a susceptible cultivar, and between TW5 and TN1, and F3 lines were evaluated for their resistance to RTSV using two RTSV inoculum sources and a serological assay (ELISA). In TKM6, the resistance to the mixture of RTSV-V + RTBV inoculum source was controlled by a single recessive gene, whereas in TW5, the resistance was controlled by two recessive genes. A single recessive gene, however, controlled the resistance in TW5 when another RTSV variant, RTSV-VI, was used, suggesting that the resistance in TW5 depends on the nature of the RTSV inoculum used. RT-PCR, sequence, and phylogenetic analyses confirmed that RTSV-VI inoculum differs from RTSV-V inoculum and accurate phenotyping of the resistance to RTSV requires the use of a genetic marker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A system for agroinoculating rice tungro bacilliform virus (RTBV), one of the two viruses of the rice tungro disease complex, has been optimised. A nontumour-inducing strain of Agrobacterium (pGV3850) was used in order to conform with biosafety regulations. Fourteen-day-old seedlings survived the mechanical damage of the technique and were still young enough to support virus replication. The level of the bacterial inoculum was important to obtain maximum infection, with a high inoculum level (0.5 × 1012 cells/ml) resulting in up to 100% infection of a susceptible variety that was comparable with infection by insect transmission. Agroinoculation with RTBV was successful for all three rice cultivarss tested; TN1 (tungro susceptible), Balimau Putih (tungro tolerant), and IR26 (RTSV and vector resistant). Agroinoculation enables resistance to RTBV to be distinguished from resistance to the leafhopper vector of the virus, and should prove useful in screening rice germplasm, breeding materials, and transgenic rice lines.