954 resultados para resistance of plant
Resumo:
Xylella fastidiosa is a phytopathogen that causes diseases in different plant species. The development of disease symptoms is associated to the blockage of the xylem vessels caused by biofilm formation. In this study, we evaluated the sensitivity of biofilm and planktonic cells to copper, one of the most important antimicrobial agents used in agriculture. We measured the exopolysaccharides (EPS) content in biofilm and planktonic cells and used real-time reverse transcription polymerase chain reaction to evaluate the expression of the genes encoding proteins involved in cation/multidrug extrusion (acrA/B, mexE/czcA, and metI) and others associated with different copper resistance mechanisms (copB, cutA1, cutA2, and cutC) in the X. fastidiosa biofilm formed in two different media. We confirmed that biofilms are less susceptible to copper than planktonic cells. The amount of EPS seems to be directly related to the resistance and it varies according to the media where the cells are grown. The same was observed for gene expression. Nevertheless, some genes seem to have a greater importance in biofilm cells resistance to copper. Our results suggest a synergistic effect between diffusion barriers and other mechanisms associated with bacterial resistance in this phytopathogen. These mechanisms are important for a bacterium that is constantly under stress conditions in the host.
Resumo:
Inbreeding is common in plant populations and can affect plant fitness and resistance against herbivores. These effects are likely to depend on population history. In a greenhouse experiment with plants from 17 populations of Lychnis flos-cuculi, we studied the effects of experimental inbreeding on resistance and plant fitness. Depending on the levels of past herbivory and abiotic factors at the site of plant origin, we found either inbreeding or outbreeding depression in herbivore resistance. Furthermore, when not damaged experimentally by snail herbivores, plants from populations with higher heterozygosity suffered from inbreeding depression and those from populations with lower heterozygosity suffered from outbreeding depression. These effects of inbreeding and outbreeding were not apparent under experimental snail herbivory. We conclude that inbreeding effects on resistance and plant fitness depend on population history. Moreover, herbivory can mask inbreeding effects on plant fitness. Thus, understanding inbreeding effects on plant fitness requires studying multiple populations and considering population history and biotic interactions.
Resumo:
Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions. © 2016 Macmillan Publishers Limited.
Resumo:
Powdery mildews, obligate biotrophic fungal parasites on a wide range of important crops, can be controlled by plant resistance (R) genes, but these are rapidly overcome by parasite mutants evading recognition. It is unknown how this rapid evolution occurs without apparent loss of parasite fitness. R proteins recognize avirulence (AVR) molecules from parasites in a gene-for-gene manner and trigger defense responses. We identify AVRa10 and AVRk1 of barley powdery mildew fungus, Blumeria graminis f sp hordei (Bgh), and show that they induce both cell death and naccessibility when transiently expressed in Mla10 and Mlk1 barley (Hordeum vulgare) varieties, respectively. In contrast with other reported fungal AVR genes, AVRa10 and AVRk1 encode proteins that lack secretion signal peptides and enhance infection success on susceptible host plant cells. AVRa10 and AVRk1 belong to a large family with mayor que30 paralogues in the genome of Bgh, and homologous sequences are present in other formae speciales of the fungus infecting other grasses. Our findings imply that the mildew fungus has a repertoire of AVR genes, which may function as effectors and contribute to parasite virulence. Multiple copies of related but distinct AVR effector paralogues might enable populations of Bgh to rapidly overcome host R genes while maintaining virulence.
Resumo:
The Arabidopsis thaliana disease resistance genes RPS2 and RPM1 belong to a class of plant disease resistance genes that encode proteins that contain an N-terminal tripartite nucleotide binding site (NBS) and a C- terminal tandem array of leucine-rich repeats. RPS2 and RPM1 confer resistance to strains of the bacterial phytopathogen Pseudomonas syringae carrying the avirulence genes avrRpt2 and avrB, respectively. In these gene-for-gene relationships, it has been proposed that pathogen avirulence genes generate specific ligands that are recognized by cognate receptors encoded by the corresponding plant resistance genes. To test this hypothesis, it is crucial to know the site of the potential molecular recognition. Mutational analysis of RPS2 protein and in vitro translation/translocation studies indicated that RPS2 protein is localized in the plant cytoplasm. To determine whether avirulence gene products themselves are the ligands for resistance proteins, we expressed the avrRpt2 and avrB genes directly in plant cells using a novel quantitative transient expression assay, and found that expression of avrRpt2 and avrB elicited a resistance response in plants carrying the corresponding resistance genes. This observation indicates that no bacterial factors other than the avirulence gene products are required for the specific resistance response as long as the avirulence gene products are correctly localized. We propose that molecular recognition of P. syringae in RPS2- and RPM1-specified resistance occurs inside of plant cells.
Resumo:
S-Adenosylhomocysteine hydrolase (SAHH) is a key enzyme in transmethylation reactions that use S-adenosylmethionine as the methyl donor. Because of the importance of SAHH in a number of S-adenosylmethionine-dependent transmethylation reactions, particularly the 5' capping of mRNA during viral replication, SAHH has been considered as a target of potential antiviral agents against animal viruses. To test the possibility of engineering a broad type of resistance to plant viruses, we expressed the antisense RNA for tobacco SAHH in transgenic tobacco plants. As expected, transgenic plants constitutively expressing an anti-sense SAHH gene showed resistance to infection by various plant viruses. Among those plants, about half exhibited some level of morphological change (typically stunting). Analysis of the physiological change in those plants showed that they contained excess levels of cytokinin. Because cytokinin has been found to induce acquired resistance, there is also a strong possibility that the observed resistance was induced by cytokinin.
Resumo:
"September 1975."
Resumo:
Besides their own adaptation strategies, plants might exploit microbial symbionts for overcoming both biotic and abiotic stresses and increase fitness. The current scenario of rapid climate change is demanding more sustainable agricultural management practices. The application of microbe-based products as a valid alternative to synthetic pesticides and fertilizers and their use to overcome stresses exacerbated by climate change, have been reviewed in the first part of this thesis. Berry fruits are widely cultivated and appreciated for their aromatic and nutraceutical properties. This thesis is focused on the role of plant and fruit microbiome on strawberry and raspberry growth, resistance, fruit quality and aroma. A taxonomical and functional description of the microbiome of different organs of three strawberry genotypes was performed both by traditional cultural dependent method and Next Generation Sequencing technique, highlighting a significant role of plant organs and genotype in determining the composition of microbial communities. Additionally, a selection of bacteria native of strawberry plants were isolated and screened for their plant growth promoting abilities and tested under the biotic stress of Xanthomonas fragariae infection and the abiotic stress of induced salinity. The monitoring of biometric parameters allowed the selection of a more restricted panel of bacterial strains, whose beneficial potential was tested in coordinated inoculations, or singularly. Raspberry plant was used for investigating the effect of cultivation method in determining fruit microbiome, and its consequent influence of berry quality and aroma. Interestingly, the cultivation method strongly influenced fruit nutraceutical traits, aroma and epiphytic bacterial biocoenosis. The involvement of the bacterial microbiota in fruit aroma determination was evaluated by performing GC–MS analysis of VOCs occurring in control, sterile and artificially reinoculated berries and by characterizing control and reinoculated berry microbiome. Differently treated berries showed significantly different aromatic profile, confirming the role of bacteria in fruit aroma development.
Resumo:
Schistosomiasis is a tropical disease caused by Schistosoma and occurs in 54 countries, mainly in South America, the Caribbean region, Africa and the eastern Mediterranean. Currently, 5 to 6 million Brazilian people are infected and 30,000 are under infection risk. Typical of poor regions, this disease is associated with the lack of basic sanitation and very frequently to the use of contaminated water in agriculture, housework and leisure. One of the most efficient methods of controlling the disease is application of molluscicides to eliminate or to reduce the population of the intermediate host snail Biomphalaria glabrata. Studies on molluscicidal activity of plant extracts have been stimulated by issues such as environmental preservation, high cost and recurrent resistance of snails to synthetic molluscicides. The aim of this study was to determine the molluscicide action of extracts from Piperaceae species on adult and embryonic stages of B. glabrata. Fifteen extracts from 13 Piperaceae species were obtained from stems, leaves and roots. Toxicity of extracts was evaluated against snails at two different concentrations (500 and 100 ppm) and those causing 100% mortality at 100 ppm concentration were selected to obtain the LC(90) (lethal concentration of 90% mortality). Piper aduncum, P. crassinervium, P. cuyabanum, P. diospyrifolium and P. hostmannianum gave 100% mortality of adult snails at concentrations ranging from 10 to 60 ppm. These extracts were also assayed on embryonic stages of B. glabrata and those from P. cuyabanum and P. hostmannianum showed 100% ovicidal action at 20 ppm.
Resumo:
A foliar rating system was developed to assess the progress of Fusarium wilt ( Panama disease) caused by Fusarium oxysporum f. sp. cubense in seven banana cultivars differing in their resistance to race 1 of the pathogen. Plantlets were transplanted into unamended soil naturally infested with the pathogen, soil amended with urea and soil amended with aged chicken manure. A corm invasion score was also developed to assess the accuracy of the foliar symptom score as an indicator of cultivar resistance. On the basis of foliar symptom scores alone, the response of five of the seven cultivars in the chicken manure treatment corresponded to their known field response. However, the response of the other two cultivars, both susceptible to the pathogen in the field, fell into two categories. One had a high foliar symptom score and a correspondingly high corm invasion score, whereas the other had a low foliar symptom score and a high corm invasion score. Breeders need to be aware of the two categories of susceptible response, if inferior breeding material is to be rejected early on in a breeding program.
Resumo:
Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.
Resumo:
Plant species that naturally occur in the Brazilian Caatinga(xeric shrubland) adapt in several ways to these harsh conditions, and that can be exploited to increase crop production. Among the strategic adaptations to confront low water availability, desiccation tolerance stands out. Up to now, the association of those species with beneficial soil microorganisms is not well understood. The aim of this study was to characterize Tripogon spicatusdiazotrophic bacterial isolates from the Caatingabiome and evaluate their ability to promote plant growth in rice. Sixteen bacterial isolates were studied in regard to their taxonomic position by partial sequencing of the 16S rRNA gene, putative diazotrophic capacity, in vitro indole-acetic acid (IAA) production and calcium phosphate solubilization, metabolism of nine different C sources in semi-solid media, tolerance to different concentrations of NaCl to pHs and intrinsic resistance to nine antibiotics. Finally, the ability of the bacterial isolates to promote plant growth was evaluated using rice (Oryza sativa) as a model plant. Among the 16 isolates evaluated, eight of them were classified as Enterobacteriaceae members, related to Enterobacter andPantoeagenera. Six other bacteria were related toBacillus, and the remaining two were related toRhizobiumand Stenotrophomonas.The evaluation of total N incorporation into the semi-solid medium indicated that all the bacteria studied have putative diazotrophic capacity. Two bacteria were able to produce more IAA than that observed for the strain BR 11175Tof Herbaspirillum seropedicae.Bacterial isolates were also able to form a microaerophilic pellicle in a semi-solid medium supplemented with different NaCl concentrations up to 1.27 mol L-1. Intrinsic resistance to antibiotics and the metabolism of different C sources indicated a great variation in physiological profile. Seven isolates were able to promote rice growth, and two bacteria were more efficient than the reference strainAzospirillum brasilense, Ab-V5. The results indicate the potential of T. spicatus as native plant source of plant growth promoting bacteria.