914 resultados para requirement for maintenance
Resumo:
The results from three types of study with broilers, namely nitrogen (N) balance, bioassays and growth experiments, provided the data used herein. Sets of data on N balance and protein accretion (bioassay studies) were used to assess the ability of the monomolecular equation to describe the relationship between (i) N balance and amino acid (AA) intake and (ii) protein accretion and AA intake. The model estimated the levels of isoleucine, lysine, valine, threonine, methionine, total sulphur AAs and tryptophan resulting in zero balance to be 58, 59, 80, 96, 23, 85 and 32 mg/kg live weight (LW)/day, respectively. These estimates show good agreement with those obtained in previous studies. For the growth experiments, four models, specifically re-parameterized for analysing energy balance data, were evaluated for their ability to determine crude protein (CP) intake at maintenance and efficiency of utilization of CP intake for producing gain. They were: a straight line, two equations representing diminishing returns behaviour (monomolecular and rectangular hyperbola) and one equation describing smooth sigmoidal behaviour with a fixed point of inflexion (Gompertz). The estimates of CP requirement for maintenance and efficiency of utilization of CP intake for producing gain varied from 5.4 to 5.9 g/kg LW/day and 0.60 to 0.76, respectively, depending on the models.
Resumo:
The objective of this work was to evaluate the total endogenous N losses, and protein and energy net requirements for maintenance in growing lambs. Thirty-four castrated lambs, 17 F1 Ideal X Ile de France wool and 17 Santa Inas hair lambs, averaging 20 +/- 0.14 kg BW, were used in the experiment. Five animals from each genotype were slaughtered at the beginning of the experiment and taken as controls. Diets (D) were composed of concentrate mix (C) and Cynodon sp. c.v. Tifton 85 hay (R), combined in three different ratios: D1 = 60C:40R; D2 = 40C:60R and D3 = 20C:80R. Animals of each group of three lambs, that showed BW of 20 kg at the beginning of the dietary regimen, were slaughtered when one of them reached 35 kg, what always happened to be the one fed with D1. Total endogenous N losses estimated for wool lambs were 250 mg N/kg BW0.75. For hair lambs, total endogenous N losses reached 324 mg N/kg BW0.75 . Hair lambs showed higher (P < 0.01) (29.9%) net requirements of protein for maintenance than wool lambs. In contrast, net energy (NE) requirement for maintenance was similar (P > 0.05) for both genotypes (74.27 kcal/kg BW0.75 per day), the average of the antilog of the two intercept values obtained from the estimated regression equations of heat production for zero metabolizable energy (ME) consumption. Further studies should be done to check if this trend is also true for metabolizable energy and protein in animals exhibiting BW gains in tropical region. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Meat production by goats has become an important livestock enterprise in several parts of the world. Nonetheless, energy and protein requirements of meat goats have not been defined thoroughly. The objective of this study was to determine the energy and protein requirements for maintenance and growth of 34 3/4 Boer x 1/4 Saanen crossbred, intact male kids (20.5 +/- 0.24 kg of initial BW). The baseline group was 7 randomly selected kids, averaging 21.2 +/- 0.36 kg of BW. An intermediate group consisted of 6 randomly selected kids, fed for ad libitum intake, that were slaughtered when they reached an average BW of 28.2 +/- 0.39 kg. The remaining kids (n = 21) were allocated randomly on d 0 to 3 levels of DMI (treatments were ad libitum or restricted to 70 or 40% of the ad libitum intake) within 7 slaughter groups. A slaughter group contained 1 kid from each treatment, and kids were slaughtered when the ad libitum treatment kid reached 35 kg of BW. Individual body components (head plus feet, hide, internal organs plus blood, and carcass) were weighed, ground, mixed, and subsampled for chemical analyses. Initial body composition was determined using equations developed from the composition of the baseline kids. The calculated daily maintenance requirement for NE was 77.3 +/- 1.05 kcal/kg(0.75) of empty BW (EBW) or 67.4 +/- 1.04 kcal/kg(0.75) of shrunk BW. The daily ME requirement for maintenance (118.1 kcal/g(0.75) of EBW or 103.0 kcal/kg(0.75) of shrunk BW) was calculated by iteration, assuming that the heat produced was equal to the ME intake at maintenance. The partial efficiency of use of ME for NE below maintenance was 0.65. A value of 2.44 +/- 0.4 g of net protein/kg(0.75) of EBW for daily maintenance was determined. Net energy requirements for growth ranged from 2.55 to 3.0 Mcal/kg of EBW gain at 20 and 35 kg of BW, and net protein requirements for growth ranged from 178.8 to 185.2 g/kg of EBW gain. These results suggest that NE and net protein requirements for growing meat goats exceed the requirements previously published for dairy goats. Moreover, results from this study suggest that the N requirement for maintenance for growing goats is greater than the established recommendations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The cost of maintenance makes up a large part of total energy costs in ruminants. Metabolizable energy (ME) requirement for maintenance (MEm) is the daily ME intake that exactly balances heat energy (HE). The net energy requirement for maintenance (NEm) is estimated subtracting MEm from the HE produced by the processing of the diet. Men cannot be directly measured experimentally and is estimated by measuring basal metabolism in fasted animals or by regression measuring the recovered energy in fed animals. MEm and NEm usually, but not always, are expressed in terms of BW0.75. However, this scaling factor is substantially empirical and its exponent is often inadequate, especially for growing animals. MEm estimated by different feeding systems (AFRC, CNCPS, CSIRO, INRA, NRC) were compared by using dairy cattle data. The comparison showed that these systems differ in the approaches used to estimate MEm and for its quantification. The CSIRO system estimated the highest MEm, mostly because it includes a correction factor to increase ME as the feeding level increases. Relative to CSIRO estimates, those of NRC, INRA, CNCPS, and AFRC were on average 0.92, 0.86, 0.84, and 0.78, respectively. MEm is affected by the previous nutritional history of the animals. This phenomenon is best predicted by dynamic models, of which several have been published in the last decades. They are based either on energy flows or on nutrient flows. Some of the different approaches used were described and discussed.
Resumo:
Energy efficiency and user comfort have recently become priorities in the Facility Management (FM) sector. This has resulted in the use of innovative building components, such as thermal solar panels, heat pumps, etc., as they have potential to provide better performance, energy savings and increased user comfort. However, as the complexity of components increases, the requirement for maintenance management also increases. The standard routine for building maintenance is inspection which results in repairs or replacement when a fault is found. This routine leads to unnecessary inspections which have a cost with respect to downtime of a component and work hours. This research proposes an alternative routine: performing building maintenance at the point in time when the component is degrading and requires maintenance, thus reducing the frequency of unnecessary inspections. This thesis demonstrates that statistical techniques can be used as part of a maintenance management methodology to invoke maintenance before failure occurs. The proposed FM process is presented through a scenario utilising current Building Information Modelling (BIM) technology and innovative contractual and organisational models. This FM scenario supports a Degradation based Maintenance (DbM) scheduling methodology, implemented using two statistical techniques, Particle Filters (PFs) and Gaussian Processes (GPs). DbM consists of extracting and tracking a degradation metric for a component. Limits for the degradation metric are identified based on one of a number of proposed processes. These processes determine the limits based on the maturity of the historical information available. DbM is implemented for three case study components: a heat exchanger; a heat pump; and a set of bearings. The identified degradation points for each case study, from a PF, a GP and a hybrid (PF and GP combined) DbM implementation are assessed against known degradation points. The GP implementations are successful for all components. For the PF implementations, the results presented in this thesis find that the extracted metrics and limits identify degradation occurrences accurately for components which are in continuous operation. For components which have seasonal operational periods, the PF may wrongly identify degradation. The GP performs more robustly than the PF, but the PF, on average, results in fewer false positives. The hybrid implementations, which are a combination of GP and PF results, are successful for 2 of 3 case studies and are not affected by seasonal data. Overall, DbM is effectively applied for the three case study components. The accuracy of the implementations is dependant on the relationships modelled by the PF and GP, and on the type and quantity of data available. This novel maintenance process can improve equipment performance and reduce energy wastage from BSCs operation.
Resumo:
Qualidade é a palavra de ordem pelo qual se regem todos os processos e intervenções da REFER (Rede Ferroviária Nacional). Com a evolução de requisitos exigidos pelo transporte em caminho de ferro, há que procurar sempre as últimas inovações, para que a circulação se faça sempre com maior segurança e comodidade, dando aos utilizadores deste tipo transporte uma qualidade extrema. Nos últimos anos esses requisitos tornaram-se cada vez mais exigentes, pois as condições de circulação aumentam tais como a prática de maiores velocidades, tonelagem e frequência das composições, o que leva a um maior rigor nos processos construtivos e conservativos das vias. A REFER, depois de grandes investimentos em novas infraestruturas ferroviárias, detém agora um decisivo e importante papel na resolução das problemáticas que emergem, apostando sempre em tecnologia de ponta para que possa desenvolver um trabalho de conservação que satisfaça todas as necessidades exigidas. Este trabalho desenvolver-se-á nesta ótica de conservação e manutenção, acompanhando todo um processo específico de ataque mecânico pesado, até à sua certificação. A análise dos vários processos caracterizará a exigência referida na manutenção, principalmente da via moderna, onde a fasquia de requisitos é mais elevada.
Resumo:
Data from six studies with male broilers fed diets covering a wide range of energy and protein were used in the current two analyses. In the first analysis, five models, specifically re-parameterized for analysing energy balance data, were evaluated for their ability to determine metabolizable energy intake at maintenance and efficiency of utilization of metabolizable energy intake for producing gain. In addition to the straight line, two types of functional form were used. They were forms describing (i) diminishing returns behaviour (monomolecular and rectangular hyperbola) and (ii) sigmoidal behaviour with a fixed point of inflection (Gompertz and logistic). These models determined metabolizable energy requirement for maintenance to be in the range 437-573 kJ/kg of body weight/day depending on the model. The values determined for average net energy requirement for body weight gain varied from 7(.)9 to 11(.)2 kJ/g of body weight. These values show good agreement with previous studies. In the second analysis, three types of function were assessed as candidates for describing the relationship between body weight and cumulative metabolizable energy intake. The functions used were: (a) monomolecular (diminishing returns behaviour), (b) Gompertz (smooth sigmoidal behaviour with a fixed point of inflection) and (c) Lopez, France and Richards (diminishing returns and sigmoidal behaviour with a variable point of inflection). The results of this analysis demonstrated that equations capable of mimicking the law of diminishing returns describe accurately the relationship between body weight and cumulative metabolizable energy intake in broilers.
Resumo:
The suitability of models specifically re-parameterized for analyzing energy balance data relating metabolizable energy intake to growth rate has recently been investigated in male broilers. In this study, the more adequate of those models was applied to growing turkeys to provide estimates of their energy needs for maintenance and growth. Three functional forms were used. They were: two equations representing diminishing returns behaviour (monomolecular and rectangular hyperbola); and one equation describing smooth sigmoidal behaviour with a fixed point of inflexion (Gompertz). The models estimated the metabolizable energy requirement for maintenance in turkeys to be 359-415 kJ/kg of live-weight/day. The predicted values of average net energy requirement for producing 1 g of gain in live-weight, between 1 and 4 times maintenance, varied from 8.7 to 10.9 kJ. These results and those previously reported for broilers are a basis for accepting the general validity of these models.
Resumo:
Nutrition for broilers under high temperatures is extremely important for brazilian broiler chicken industry because the amounts of consumed nutrients and environmental temperature have great effects on bird performance and carcass quality. Among diet nutrients, protein has the highest heat increment; thus, during many years, diets with low protein level were recommended in order to reduce heat production in broiler chickens under heat stress. However, reports have shown that low-protein diets have negative effects on broiler performance when environmental temperature is high, because during heat stress, low food intake associated to a low diet protein induce amino acid deficiencies. Other studies have shown that broilers fed low-protein diets increase their energy requirement for maintenance with higher heat production. Thus, with the growth of broiler industry in tropical areas more challenges need to be faced by the farmers. So, both the ambient and nutritional conditions ought to be well managed to avoid negative effects on poultry production once they can affect the metabolism (body heat production under low temperature and body heat dissipation under high temperature) with consequence on poultry performance (meat and eggs).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O objetivo do presente trabalho foi determinar as exigências de proteína para aves reprodutoras pesadas através do método fatorial. A exigência de proteína bruta para mantença (PBm) foi determinada por intermédio da técnica do balanço de nitrogênio por meio de ensaio de metabolismo com aves submetidas a quatro dietas com níveis decrescentes de proteína, proporcionando balanço positivo, próximo a zero e negativo. Para determinar a exigência de proteína bruta para o ganho de peso (PBg) dois experimentos foram conduzidos, sendo que em um, determinou-se as exigências líquidas de nitrogênio e no outro, a eficiência de utilização do nitrogênio para o ganho, por meio de abates semanais de aves no período de 26 a 33 semanas de idade. A exigência de proteína bruta para produção de ovos (PBo) foi determinada através de análises semanais de proteína bruta dos ovos coletados, no período de 31 a 37 semanas de idade, considerando a eficiência de deposição da proteína no ovo. A exigência e eficiência de utilização da proteína para mantença foram 2.282 mg PB/kg0,75/dia e 60,79%; respectivamente. As exigências de PBg e PBo determinadas foram: 356 mg PB/g e 262 mg PB/g, respectivamente, e as eficiências de utilização do nitrogênio, 40 e 46,80%, respectivamente. A equação de predição elaborada para aves reprodutoras pesadas na fase de produção foi: PB=2,282.P0,75+0,356.G+0,262.MO, onde PB é a exigência de proteína bruta (g/ave/dia), P o peso corporal (kg), G o ganho de peso (g/dia) e MO a massa de ovos (g/dia).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)