875 resultados para repetition priming
Resumo:
Nondeclarative memory and novelty processing in the brain is an actively studied field of neuroscience, and reducing neural activity with repetition of a stimulus (repetition suppression) is a commonly observed phenomenon. Recent findings of an opposite trend specifically, rising activity for unfamiliar stimuli—question the generality of repetition suppression and stir debate over the underlying neural mechanisms. This letter introduces a theory and computational model that extend existing theories and suggests that both trends are, in principle, the rising and falling parts of an inverted U-shaped dependence of activity with respect to stimulus novelty that may naturally emerge in a neural network with Hebbian learning and lateral inhibition. We further demonstrate that the proposed model is sufficient for the simulation of dissociable forms of repetition priming using real-world stimuli. The results of our simulation also suggest that the novelty of stimuli used in neuroscientific research must be assessed in a particularly cautious way. The potential importance of the inverted-U in stimulus processing and its relationship to the acquisition of knowledge and competencies in humans is also discussed
Resumo:
The mere exposure effect is defined as enhanced attitude toward a stimulus that has been repeatedly exposed. Repetition priming is defined as facilitated processing of a previously exposed stimulus. We conducted a direct comparison between the two phenomena to test the assumption that the mere exposure effect represents an example of repetition priming. In two experiments, having studied a set of words or nonwords, participants were given a repetition priming task (perceptual identification) or one of two mere exposure (affective liking or preference judgment) tasks. Repetition printing was obtained for both words and nonwords, but only nonwords produced a mere exposure effect. This demonstrates a key boundary for observing the mere exposure effect, one not readily accommodated by a perceptual representation systems (Tulving & Schacter, 1990) account, which assumes that both phenomena should show some sensitivity to nonwords and words.
Resumo:
Over the last two decades interest in implicit memory, most notably repetition priming, has grown considerably. During the same period, research has also focused on the mere exposure effect. Although the two areas have developed relatively independently, a number of studies has described the mere exposure effect as an example of implicit memory. Tacit in their comparisons is the assumption that the effect is more specifically a demonstration of repetition priming. Having noted that this assumption has attracted relatively little attention, this paper reviews current evidence and shows that it is by no means conclusive. Although some evidence is suggestive of a common underlying mechanism, even a modified repetition priming (perceptual fluency/attribution) framework cannot accommodate all of the differences between the two phenomena. Notwithstanding this, it seems likely that a version of this theoretical framework still offers the best hope of a comprehensive explanation for the mere exposure effect and its relationship to repetition priming. As such, the paper finishes by offering some initial guidance as to ways in which the perceptual fluency/attribution framework might be extended, as well as outlining important areas for future research.
Resumo:
Semantic priming occurs when a subject is faster in recognising a target word when it is preceded by a related word compared to an unrelated word. The effect is attributed to automatic or controlled processing mechanisms elicited by short or long interstimulus intervals (ISIs) between primes and targets. We employed event-related functional magnetic resonance imaging (fMRI) to investigate blood oxygen level dependent (BOLD) responses associated with automatic semantic priming using an experimental design identical to that used in standard behavioural priming tasks. Prime-target semantic strength was manipulated by using lexical ambiguity primes (e.g., bank) and target words related to dominant or subordinate meaning of the ambiguity. Subjects made speeded lexical decisions (word/nonword) on dominant related, subordinate related, and unrelated word pairs presented randomly with a short ISI. The major finding was a pattern of reduced activity in middle temporal and inferior prefrontal regions for dominant versus unrelated and subordinate versus unrelated comparisons, respectively. These findings are consistent with both a dual process model of semantic priming and recent repetition priming data that suggest that reductions in BOLD responses represent neural priming associated with automatic semantic activation and implicate the left middle temporal cortex and inferior prefrontal cortex in more automatic aspects of semantic processing.
Resumo:
Previous functional imaging studies have shown that facilitated processing of a visual object on repeated, relative to initial, presentation (i.e., repetition priming) is associated with reductions in neural activity in multiple regions, including fusiforin/lateral occipital cortex. Moreover, activity reductions have been found, at diminished levels, when a different exemplar of an object is presented on repetition. In one previous study, the magnitude of diminished priming across exemplars was greater in the right relative to the left fusiform, suggesting greater exemplar specificity in the right. Another previous study, however, observed fusiform lateralization modulated by object viewpoint, but not object exemplar. The present fMRI study sought to determine whether the result of differential fusiform responses for perceptually different exemplars could be replicated. Furthermore, the role of the left fusiform cortex in object recognition was investigated via the inclusion of a lexical/semantic manipulation. Right fusiform cortex showed a significantly greater effect of exemplar change than left fusiform, replicating the previous result of exemplar-specific fusiform lateralization. Right fusiform and lateral occipital cortex were not differentially engaged by the lexical/semantic manipulation, suggesting that their role in visual object recognition is predominantly in the. C visual discrimination of specific objects. Activation in left fusiform cortex, but not left lateral occipital cortex, was modulated by both exemplar change and lexical/semantic manipulation, with further analysis suggesting a posterior-to-anterior progression between regions involved in processing visuoperceptual and lexical/semantic information about objects. The results are consistent with the view that the right fusiform plays a greater role in processing specific visual form information about objects, whereas the left fusiform is also involved in lexical/semantic processing. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Semantic priming occurs when a subject is faster in recognising a target word when it is preceded by a related word compared to an unrelated word. The effect is attributed to automatic or controlled processing mechanisms elicited by short or long interstimulus intervals (ISIs) between primes and targets. We employed event-related functional magnetic resonance imaging (fMRI) to investigate blood oxygen level dependent (BOLD) responses associated with automatic semantic priming using an experimental design identical to that used in standard behavioural priming tasks. Prime-target semantic strength was manipulated by using lexical ambiguity primes (e.g., bank) and target words related to dominant or subordinate meaning of the ambiguity. Subjects made speeded lexical decisions (word/nonword) on dominant related, subordinate related, and unrelated word pairs presented randomly with a short ISI. The major finding was a pattern of reduced activity in middle temporal and inferior prefrontal regions for dominant versus unrelated and subordinate versus unrelated comparisons, respectively. These findings are consistent with both a dual process model of semantic priming and recent repetition priming data that suggest that reductions in BOLD responses represent neural priming associated with automatic semantic activation and implicate the left middle temporal cortex and inferior prefrontal cortex in more automatic aspects of semantic processing.
Resumo:
This study examined the properties of ERP effects elicited by unattended (spatially uncued) objects using a short-lag repetition-priming paradigm. Same or different common objects were presented in a yoked prime-probe trial either as intact images or slightly scrambled (half-split) versions. Behaviourally, only objects in a familiar (intact) view showed priming. An enhanced negativity was observed at parietal and occipito-parietal electrode sites within the time window of the posterior N250 after the repetition of intact, but not split, images. An additional post-hoc N2pc analysis of the prime display supported that this result could not be attributed to differences in salience between familiar intact and split views. These results demonstrate that spatially unattended objects undergo visual processing but only if shown in familiar views, indicating a role of holistic processing of objects that is independent of attention.
Resumo:
Word frequency (WF) and strength effects are two important phenomena associated with episodic memory. The former refers to the superior hit-rate (HR) for low (LF) compared to high frequency (HF) words in recognition memory, while the latter describes the incremental effect(s) upon HRs associated with repeating an item at study. Using the "subsequent memory" method with event-related fMRI, we tested the attention-at-encoding (AE) [M. Glanzer, J.K. Adams, The mirror effect in recognition memory: data and theory, J. Exp. Psychol.: Learn Mem. Cogn. 16 (1990) 5-16] explanation of the WF effect. In addition to investigating encoding strength, we addressed if study involves accessing prior representations of repeated items via the same mechanism as that at test [J.L. McClelland, M. Chappell, Familiarity breeds differentiation: a subjective-likelihood approach to the effects of experience in recognition memory, Psychol. Rev. 105 (1998) 724-760], entailing recollection [K.J. Malmberg, J.E. Holden, R.M. Shiffrin, Modeling the effects of repetitions, similarity, and normative word frequency on judgments of frequency and recognition memory, J. Exp. Psychol.: Learn Mem. Cogn. 30 (2004) 319-331] and whether less processing effort is entailed for encoding each repetition [M. Cary, L.M. Reder, A dual-process account of the list-length and strength-based mirror effects in recognition, J. Mem. Lang. 49 (2003) 231-248]. The increased BOLD responses observed in the left inferior prefrontal cortex (LIPC) for the WF effect provide support for an AE account. Less effort does appear to be required for encoding each repetition of an item, as reduced BOLD responses were observed in the LIPC and left lateral temporal cortex; both regions demonstrated increased responses in the conventional subsequent memory analysis. At test, a left lateral parietal BOLD response was observed for studied versus unstudied items, while only medial parietal activity was observed for repeated items at study, indicating that accessing prior representations at encoding does not necessarily occur via the same mechanism as that at test, and is unlikely to involve a conscious recall-like process such as recollection. This information may prove useful for constraining cognitive theories of episodic memory.
Resumo:
Les stimuli naturels projetés sur nos rétines nous fournissent de l’information visuelle riche. Cette information varie le long de propriétés de « bas niveau » telles que la luminance, le contraste, et les fréquences spatiales. Alors qu’une partie de cette information atteint notre conscience, une autre partie est traitée dans le cerveau sans que nous en soyons conscients. Les propriétés de l’information influençant l’activité cérébrale et le comportement de manière consciente versus non-consciente demeurent toutefois peu connues. Cette question a été examinée dans les deux derniers articles de la présente thèse, en exploitant les techniques psychophysiques développées dans les deux premiers articles. Le premier article présente la boîte à outils SHINE (spectrum, histogram, and intensity normalization and equalization), développée afin de permettre le contrôle des propriétés de bas niveau de l'image dans MATLAB. Le deuxième article décrit et valide la technique dite des bulles fréquentielles, qui a été utilisée tout au long des études de cette thèse pour révéler les fréquences spatiales utilisées dans diverses tâches de perception des visages. Cette technique offre les avantages d’une haute résolution au niveau des fréquences spatiales ainsi que d’un faible biais expérimental. Le troisième et le quatrième article portent sur le traitement des fréquences spatiales en fonction de la conscience. Dans le premier cas, la méthode des bulles fréquentielles a été utilisée avec l'amorçage par répétition masquée dans le but d’identifier les fréquences spatiales corrélées avec les réponses comportementales des observateurs lors de la perception du genre de visages présentés de façon consciente versus non-consciente. Les résultats montrent que les mêmes fréquences spatiales influencent de façon significative les temps de réponse dans les deux conditions de conscience, mais dans des sens opposés. Dans le dernier article, la méthode des bulles fréquentielles a été combinée à des enregistrements intracrâniens et au Continuous Flash Suppression (Tsuchiya & Koch, 2005), dans le but de cartographier les fréquences spatiales qui modulent l'activation de structures spécifiques du cerveau (l'insula et l'amygdale) lors de la perception consciente versus non-consciente des expressions faciales émotionnelles. Dans les deux régions, les résultats montrent que la perception non-consciente s'effectue plus rapidement et s’appuie davantage sur les basses fréquences spatiales que la perception consciente. La contribution de cette thèse est donc double. D’une part, des contributions méthodologiques à la recherche en perception visuelle sont apportées par l'introduction de la boîte à outils SHINE ainsi que de la technique des bulles fréquentielles. D’autre part, des indications sur les « corrélats de la conscience » sont fournies à l’aide de deux approches différentes.
Resumo:
Investigations of memory deficits in older individuals have concentrated on their increased likelihood of forgetting events or details of events that were actually encountered (errors of omission). However mounting evidence demonstrates that normal cognitive aging also is associated with an increased propensity for errors of commission-shown in false alarms or false recognition. The present study examined the origins of this age difference. Older and younger adults each performed three types of memory tasks in which details of encountered items might influence performance. Although older adults showed greater false recognition of related lures on a standard (identical) old/new episodic recognition task, older and younger adults showed parallel effects of detail on repetition priming and meaning-based episodic recognition (decreased priming and decreased meaning-based recognition for different relative to same exemplars). The results suggest that the older adults encoded details but used them less effectively than the younger adults in the recognition context requiring their deliberate, controlled use.
Resumo:
The aim of this study was to investigate the widely held, but largely untested, view that implicit memory (repetition priming) reflects an automatic form of retrieval. Specifically, in Experiment 1 we explored whether a secondary task (syllable monitoring), performed during retrieval, would disrupt performance on explicit (cued recall) and implicit (stem completion) memory tasks equally. Surprisingly, despite substantial memory and secondary costs to cued recall when performed with a syllable-monitoring task, the same manipulation had no effect on stem completion priming or on secondary task performance. In Experiment 2 we demonstrated that even when using a particularly demanding version of the stem completion task that incurred secondary task costs, the corresponding disruption to implicit memory performance was minimal. Collectively, the results are consistent with the view that implicit memory retrieval requires little or no processing capacity and is not seemingly susceptible to the effects of dividing attention at retrieval.
Resumo:
This article reviews attempts to characterize the mental operations mediated by left inferior prefrontal cortex, especially the anterior and inferior portion of the gyrus, with the functional neuroimaging techniques of positron emission tomography and functional magnetic resonance imaging. Activations in this region occur during semantic, relative to nonsemantic, tasks for the generation of words to semantic cues or the classification of words or pictures into semantic categories. This activation appears in the right prefrontal cortex of people known to be atypically right-hemisphere dominant for language. In this region, activations are associated with meaningful encoding that leads to superior explicit memory for stimuli and deactivations with implicit semantic memory (repetition priming) for words and pictures. New findings are reported showing that patients with global amnesia show deactivations in the same region associated with repetition priming, that activation in this region reflects selection of a response from among numerous relative to few alternatives, and that activations in a portion of this region are associated specifically with semantic relative to phonological processing. It is hypothesized that activations in left inferior prefrontal cortex reflect a domain-specific semantic working memory capacity that is invoked more for semantic than nonsemantic analyses regardless of stimulus modality, more for initial than for repeated semantic analysis of a word or picture, more when a response must be selected from among many than few legitimate alternatives, and that yields superior later explicit memory for experiences.
Resumo:
Background. Previous research has shown that object recognition may develop well into late childhood and adolescence. The present study extends that research and reveals novel differences in holistic and analytic recognition performance in 7-12 year olds compared to that seen in adults. We interpret our data within a hybrid model of object recognition that proposes two parallel routes for recognition (analytic vs. holistic) modulated by attention. Methodology / Principal Findings. Using a repetition-priming paradigm, we found in Experiment 1 that children showed no holistic priming, but only analytic priming. Given that holistic priming might be thought to be more ‘primitive’, we confirmed in Experiment 2 that our surprising finding was not because children’s analytic recognition was merely a result of name repetition. Conclusions / Significance. Our results suggest a developmental primacy of analytic object recognition. By contrast, holistic object recognition skills appear to emerge with a much more protracted trajectory extending into late adolescence.
Resumo:
Previous research (e.g., Jüttner et al, 2013, Developmental Psychology, 49, 161-176) has shown that object recognition may develop well into late childhood and adolescence. The present study extends that research and reveals novel di erences in holistic and analytic recognition performance in 7-11 year olds compared to that seen in adults. We interpret our data within Hummel’s hybrid model of object recognition (Hummel, 2001, Visual Cognition, 8, 489-517) that proposes two parallel routes for recognition (analytic vs. holistic) modulated by attention. Using a repetition-priming paradigm, we found in Experiment 1 that children showed no holistic priming, but only analytic priming. Given that holistic priming might be thought to be more ‘primitive’, we confirmed in Experiment 2 that our surprising finding was not because children’s analytic recognition was merely a result of name repetition. Our results suggest a developmental primacy of analytic object recognition. By contrast, holistic object recognition skills appear to emerge with a much more protracted trajectory extending into late adolescence