883 resultados para renormalisation group theory
Resumo:
We review our work on generalisations of the Becker-Doring model of cluster-formation as applied to nucleation theory, polymer growth kinetics, and the formation of upramolecular structures in colloidal chemistry. One valuable tool in analysing mathematical models of these systems has been the coarse-graining approximation which enables macroscopic models for observable quantities to be derived from microscopic ones. This permits assumptions about the detailed molecular mechanisms to be tested, and their influence on the large-scale kinetics of surfactant self-assembly to be elucidated. We also summarise our more recent results on Becker-Doring systems, notably demonstrating that cross-inhibition and autocatalysis can destabilise a uniform solution and lead to a competitive environment in which some species flourish at the expense of others, phenomena relevant in models of the origins of life.
Resumo:
The dynamo effect is used to describe the generation of magnetic fields in astrophysical objects. However, no rigorous derivation of the dynamo equation is available. We justify the form of the equation using an Operator Product Expansion (OPE) of the relevant fields. We also calculate the coefficients of the OPE series using a dynamic renormalisation group approach and discuss the time evolution of the initial conditions on the initial seed magnetic field.
Resumo:
A computer program, named ADEPT (A Distinctly Empirical Prover of Theorems), has been written which proves theorems taken from the abstract theory of groups. Its operation is basically heuristic, incorporating many of the techniques of the human mathematician in a "natural" way. This program has proved almost 100 theorems, as well as serving as a vehicle for testing and evaluating special-purpose heuristics. A detailed description of the program is supplemented by accounts of its performance on a number of theorems, thus providing many insights into the particular problems inherent in the design of a procedure capable of proving a variety of theorems from this domain. Suggestions have been formulated for further efforts along these lines, and comparisons with related work previously reported in the literature have been made.
Resumo:
Driven by the requirements of the bionic joint or tracking equipment for the spherical parallel manipulators (SPMs) with three rotational degrees-of-freedom (DoFs), this paper carries out the topology synthesis of a class of three-legged SPMs employing Lie group theory. In order to achieve the intersection of the displacement subgroups, the subgroup characteristics and operation principles are defined in this paper. Mainly drawing on the Lie group theory, the topology synthesis procedure of three-legged SPMs including four stages and two functional blocks is proposed, in which the assembly principles of three legs are defined. By introducing the circular track, a novel class of three-legged SPMs is synthesized, which is the important complement to the existing SPMs. Finally, four typical examples are given to demonstrate the finite displacements of the synthesized three-legged SPMs.
Resumo:
Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier $p$ assez grand, le groupe $PSL_2(\mathbb{F}_p)$ (d'ordre noté $n$) ne posséde aucun sous-ensemble sans produit de taille $c n^{8/9}$, il y répond par la négative. Nous allons considérer le probléme dans le cas des groupes compacts finis, et plus particuliérement des groupes profinis $SL_k(\mathbb{Z}_p)$ et $Sp_{2k}(\mathbb{Z}_p)$. La premiére partie de cette thése est dédiée à l'obtention de bornes inférieures et supérieures exponentielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite d'établir préalablement une borne inférieure sur la dimension des représentations non-triviales des groupes finis $SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ et $Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Notre théoréme prolonge le travail de Landazuri et Seitz, qui considérent le degré minimal des représentations pour les groupes de Chevalley sur les corps finis, tout en offrant une preuve plus simple que la leur. La seconde partie de la thése à trait à la théorie algébrique des nombres. Un polynome monogéne $f$ est un polynome unitaire irréductible à coefficients entiers qui endengre un corps de nombres monogéne. Pour un nombre premier $q$ donné, nous allons montrer, en utilisant le théoréme de densité de Tchebotariov, que la densité des nombres premiers $p$ tels que $t^q -p$ soit monogéne est supérieure ou égale à $(q-1)/q$. Nous allons également démontrer que, quand $q=3$, la densité des nombres premiers $p$ tels que $\mathbb{Q}(\sqrt[3]{p})$ soit non monogéne est supérieure ou égale à $1/9$.
Resumo:
Exam questions and solutions for a second year group theory course.
Resumo:
This paper aims to develop a mathematical model based on semi-group theory, which allows to improve quality of service (QoS), including the reduction of the carbon path, in a pervasive environment of a Mobile Virtual Network Operator (MVNO). This paper generalise an interrelationship Machine to Machine (M2M) mathematical model, based on semi-group theory. This paper demonstrates that using available technology and with a solid mathematical model, is possible to streamline relationships between building agents, to control pervasive spaces so as to reduce the impact in carbon footprint through the reduction of GHG.
Resumo:
Rotations are an integral part of the study of rotational spectroscopy, as well as a part of group theory, hence this introduction.
Resumo:
Conducts a strategic group mapping exercise by analysing R&D investment, sales/marketing cost and leadership information pertaining to the pharmaceuticals industry. Explains that strategic group mapping assists companies in identifying their principal competitors, and hence supports strategic decision-making, and shows that, in the pharmaceutical industry, R&D spending, the cost of sales and marketing, i.e. detailing, and technological leadership are mobility barriers to companies moving between sectors. Illustrates, in bubble-chart format, strategic groups in the pharmaceutical industry, plotting detailing-costs against the scale of activity in therapeutic areas. Places companies into 12 groups, and profiles the strategy and market-position similarities of the companies in each group. Concludes with three questions for companies to ask when evaluating their own, and their competitors, strategies and returns, and suggests that strategy mapping can be carried out in other industries, provided mobility barriers are identified.
Resumo:
Purpose – The purpose of this paper is to consider the current status of strategic group theory in the light of developments over the last three decades. and then to discuss the continuing value of the concept, both to strategic management research and practising managers. Design/methodology/approach – Critical review of the idea of strategic groups together with a practical strategic mapping illustration. Findings – Strategic group theory still provides a useful approach for management research, which allows a detailed appraisal and comparison of company strategies within an industry. Research limitations/ implications – Strategic group research would undoubtedly benefit from more directly comparable, industry-specific studies, with a more careful focus on variable selection and the statistical methods used for validation. Future studies should aim to build sets of industry specific variables that describe strategic choice within that industry. The statistical methods used to identify strategic groupings need to be robust to ensure that strategic groups are not solely an artefact of method. Practical implications – The paper looks specifically at an application of strategic group theory in the UK pharmaceutical industry. The practical benefits of strategic groups as a classification system and of strategic mapping as a strategy development and analysis tool are discussed. Originality/value – The review of strategic group theory alongside alternative taxonomies and application of the concept to the UK pharmaceutical industry.
Study of industrially relevant boundary layer and axisymmetric flows, including swirl and turbulence
Resumo:
Micropolar and RNG-based modelling of industrially relevant boundary layer and recirculating swirling flows is described. Both models contain a number of adjustable parameters and auxiliary conditions that must be either modelled or experimentally determined, and the effects of varying these on the resulting flow solutions is quantified. To these ends, the behaviour of the micropolar model for self-similar flow over a surface that is both stretching and transpiring is explored in depth. The simplified governing equations permit both analytic and numerical approaches to be adopted, and a number of closed form solutions (both exact and approximate) are obtained using perturbation and order of magnitude analyses. Results are compared with the corresponding Newtonian flow solution in order to highlight the differences between the micropolar and classical models, and significant new insights into the behaviour of the micropolar model are revealed for this flow. The behaviour of the RNG-bas based models for swirling flow with vortex breakdown zones is explored in depth via computational modelling of two experimental data sets and an idealised breakdown flow configuration. Meticulous modeling of upstream auxillary conditions is required to correctly assess the behavior of the models studied in this work. The novel concept of using the results to infer the role of turbulence in the onset and topology of the breakdown zone is employed.
Resumo:
Network information theory and channels with memory are two important but difficult frontiers of information theory. In this two-parted dissertation, we study these two areas, each comprising one part. For the first area we study the so-called entropy vectors via finite group theory, and the network codes constructed from finite groups. In particular, we identify the smallest finite group that violates the Ingleton inequality, an inequality respected by all linear network codes, but not satisfied by all entropy vectors. Based on the analysis of this group we generalize it to several families of Ingleton-violating groups, which may be used to design good network codes. Regarding that aspect, we study the network codes constructed with finite groups, and especially show that linear network codes are embedded in the group network codes constructed with these Ingleton-violating families. Furthermore, such codes are strictly more powerful than linear network codes, as they are able to violate the Ingleton inequality while linear network codes cannot. For the second area, we study the impact of memory to the channel capacity through a novel communication system: the energy harvesting channel. Different from traditional communication systems, the transmitter of an energy harvesting channel is powered by an exogenous energy harvesting device and a finite-sized battery. As a consequence, each time the system can only transmit a symbol whose energy consumption is no more than the energy currently available. This new type of power supply introduces an unprecedented input constraint for the channel, which is random, instantaneous, and has memory. Furthermore, naturally, the energy harvesting process is observed causally at the transmitter, but no such information is provided to the receiver. Both of these features pose great challenges for the analysis of the channel capacity. In this work we use techniques from channels with side information, and finite state channels, to obtain lower and upper bounds of the energy harvesting channel. In particular, we study the stationarity and ergodicity conditions of a surrogate channel to compute and optimize the achievable rates for the original channel. In addition, for practical code design of the system we study the pairwise error probabilities of the input sequences.