864 resultados para renewable energy system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä diplomityössä tarkastellaan täysin uusiutuvaa energiajärjestelmää Etelä-Karjalan maakunnan alueella, mikä onkin jo tällä hetkellä Suomen uusiutuvin maakunta. Diplomityössä tarkastellaan julkisen sektorin, liikenteen ja rakennusten energian kulutusta mutta teollisuuden energiankäyttö jätetään tarkastelun ulkopuolelle. Työssä tutustutaan tämän hetken Etelä-Karjalan energiajärjestelmään ja sen perusteella tehdään referenssi-skenaario. Tulevaisuuden skenaariot tehdään vuosille 2030 ja 2050. Tulevaisuuden skenaarioissa muutos keskittyy järjestelmän sähköistymiseen ja uusiutuvien tuotantomuotojen integroimiseen järjestelmään. Sähköistyminen kasvattaa sähkönkulutusta, joka pyritään kattamaan uusiutuvilla tuotantomuodoilla, lähinnä tuuli- ja aurinkovoimalla. Liikennesektori rajataan kumipyöräliikenteeseen ja sen muutos tulee olemaan haastavin ja aikaa vievin. Muutokseen pyritään liikennepolttoaineiden tuotannolla maakunnassa sekä sähköautoilulla. Uusiutuva energiajärjestelmä tarvitsee tuotannon ja kysynnän joustoa sekä älyä järjestelmältä. Työssä tarkastellaan myös järjestelmän kustannuksia sekä työllisyysvaikutuksia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND OR CONTEXT: Current work in remote laboratories focuses on student interaction in a setting that can be at times disconnected from real world systems. Laboratories have been developed that show models of a working system, focusing on a single aspect, but very few laboratories allow the user to see the outputs of a working system that interacts with the real world as would be expected outside of a laboratory setting. It was aimed with this paper to show a design of a novel approach to building a remote laboratory that would be able to interact with a fully functional renewable energy system, and to show the students the outputs of such a system in real time. It allows for the user to be presented with information in a new context.
PURPOSE OR GOAL: With this research it is hoped to achieve a remote laboratory that will be able to present students with the data from a renewable energy system live, as it is generated as well as all the logged date generated. It is aimed with this novel approach to building a remote laboratory to assist the students in learning about renewable energy systems while allowing the student to access real data, instead of simulated data. Links to increased motivation due to realism in data given as well as change in student perception on learning in remote laboratories mean that a system such as this could change the way students approach learning about renewable energy generation systems. This will require further research however.
APPROACH: This remote laboratory required gathering data from an already established system. The live results were not recorded, and a log file was generated daily, however this was not fast enough to give to students as it was generated, so a system that could maintain communication between all systems, while also polling for data itself was required. In addition to this, the system had to communicate to a server that would give students access to the live data. The server was set up in such a way that students were not required to install any programs on their computer, multiple students could access the data at any given time, and a wide range of devices, including mobile devices, could all access the remote laboratory.
DISCUSSION: Key outcomes include the design of the remote laboratory, including screenshots of data acquisition from the renewable energy system from different devices. The design is split into two sections, one covering the server side architecture while another covers the data acquisition architecture. A very brief discussion on students’ initial interaction is also undertaken.
RECOMMENDATIONS/IMPLICATIONS/CONCLUSION: Research has shown that the degree of realism in remote education can have an effect on students’ behaviors/motivation in a remote laboratory. By allowing students to knowingly access a real system that is currently being used to generate power from renewable energy sources, the methods and motivations that students use when approaching renewable energy systems may change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beside the traditional paradigm of "centralized" power generation, a new concept of "distributed" generation is emerging, in which the same user becomes pro-sumer. During this transition, the Energy Storage Systems (ESS) can provide multiple services and features, which are necessary for a higher quality of the electrical system and for the optimization of non-programmable Renewable Energy Source (RES) power plants. A ESS prototype was designed, developed and integrated into a renewable energy production system in order to create a smart microgrid and consequently manage in an efficient and intelligent way the energy flow as a function of the power demand. The produced energy can be introduced into the grid, supplied to the load directly or stored in batteries. The microgrid is composed by a 7 kW wind turbine (WT) and a 17 kW photovoltaic (PV) plant are part of. The load is given by electrical utilities of a cheese factory. The ESS is composed by the following two subsystems, a Battery Energy Storage System (BESS) and a Power Control System (PCS). With the aim of sizing the ESS, a Remote Grid Analyzer (RGA) was designed, realized and connected to the wind turbine, photovoltaic plant and the switchboard. Afterwards, different electrochemical storage technologies were studied, and taking into account the load requirements present in the cheese factory, the most suitable solution was identified in the high temperatures salt Na-NiCl2 battery technology. The data acquisition from all electrical utilities provided a detailed load analysis, indicating the optimal storage size equal to a 30 kW battery system. Moreover a container was designed and realized to locate the BESS and PCS, meeting all the requirements and safety conditions. Furthermore, a smart control system was implemented in order to handle the different applications of the ESS, such as peak shaving or load levelling.